Orbital profile and orbit algebra of oligomorphic permutation groups
 Conjecture of Macpherson

Justine Falque
joint work with Nicolas M. Thiéry
Laboratoire de Recherche en Informatique
Université Paris-Sud (Orsay)

EJCIM, March 29th of 2018

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)=2$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)=2$
$\varphi_{G}(4)=1$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)=2$
$\varphi_{G}(4)=1$
$\varphi_{G}(5)=1$

Age and profile : example on a finite group (1)

Action of the cyclic group $G=C_{5}$ on the five pearl necklace \rightarrow induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that orbit

Age of $G: \mathcal{A}(G)=\sqcup_{n} \mathcal{A}(G)_{n}, \quad \mathcal{A}(G)_{n}=\{$ orbits of degree $n\}$
Profile of $G: \varphi_{G}: n \mapsto \operatorname{card}\left(\mathcal{A}(G)_{n}\right)$
$\varphi_{G}(0)=1$
$\varphi_{G}(1)=1$
$\varphi_{G}(2)=2$
$\varphi_{G}(3)=2$
$\varphi_{G}(4)=1$
$\varphi_{G}(5)=1$
$\varphi_{G}(n)=0$ si $n>5$

Age and profile of infinite permutation groups

- G : a permutation group acting on a countably infinite set E

Age and profile of infinite permutation groups

- G : a permutation group acting on a countably infinite set E
- Classical idea in order to study a sequence of numbers (here the profile) : to encode it into a generating series

$$
\mathcal{H}_{G}=\sum_{n \geq 0} \varphi_{G}(n) z^{n}
$$

Age and profile of infinite permutation groups

- G : a permutation group acting on a countably infinite set E
- Classical idea in order to study a sequence of numbers (here the profile) : to encode it into a generating series

$$
\mathcal{H}_{G}=\sum_{n \geq 0} \varphi_{G}(n) z^{n}
$$

- Problem : the profile may take infinite values

Age and profile of infinite permutation groups

- G : a permutation group acting on a countably infinite set E
- Classical idea in order to study a sequence of numbers (here the profile) : to encode it into a generating series

$$
\mathcal{H}_{G}=\sum_{n \geq 0} \varphi_{G}(n) z^{n}
$$

- Problem : the profile may take infinite values
\rightarrow Oligomorphic permutation groups:

$$
\varphi_{G}(n)<\infty \quad \forall n \in \mathbb{N}
$$

Wreath product of two permutation groups

$G \leq \mathfrak{S}_{M}, H \leq \mathfrak{S}_{N}$
$G \imath H$ has a natural action on $E=\sqcup_{i=1}^{N} E_{i}$, with $\operatorname{card} E_{i}=M$.

Examples

- $G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{\infty}($ action on a denumerable set of copies of $\mathbb{N})$ An orbit of degree $n \longleftrightarrow$ a partition of n $\varphi_{G}(n)=\mathscr{P}(n)$, the number of partitions of n

$$
\mathcal{H}_{G}=\frac{1}{\prod_{i=1}^{\infty}\left(1-z^{i}\right)}
$$

Examples

- $G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{\infty}($ action on a denumerable set of copies of $\mathbb{N})$ An orbit of degree $n \longleftrightarrow$ a partition of n $\varphi_{G}(n)=\mathscr{P}(n)$, the number of partitions of n

$$
\mathcal{H}_{G}=\frac{1}{\prod_{i=1}^{\infty}\left(1-z^{i}\right)}
$$

- $G=\mathfrak{S}_{m} \imath \mathfrak{S}_{\infty}$
$\varphi_{G}(n)=\mathscr{P}_{m}(n)$, number of partitions into parts of size $\leq m$

$$
\mathcal{H}_{G}=\frac{1}{\prod_{i=1}^{m}\left(1-z^{i}\right)}
$$

- $G=\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{m}$
$\varphi_{G}(n)=\mathscr{P}_{m}(n)$, number of partitions into at most m parts

$$
\mathcal{H}_{G}=\frac{1}{\prod_{i=1}^{m}\left(1-z^{i}\right)}
$$

Conjecture of Cameron

Conjecture (Cameron, 70s)

If a profile is bounded by a polynomial it is quasi-polynomial:

$$
\varphi_{G}(n)=a_{s}(n) n^{s}+\cdots+a_{1}(n) n+a_{0}(n)
$$

where the a_{i} 's are periodic functions.

Conjecture of Cameron

Conjecture (Cameron, 70s)
If a profile is bounded by a polynomial it is quasi-polynomial:

$$
\varphi_{G}(n)=a_{s}(n) n^{s}+\cdots+a_{1}(n) n+a_{0}(n),
$$

where the a_{i} 's are periodic functions.
Note

$$
\mathcal{H}_{G}=\frac{P(z)}{\left(1-z^{\left.d_{1}\right) \cdots\left(1-z^{d} k\right)}\right.} \Longrightarrow \quad \varphi_{G} \text { quasi-polynomial of degree }
$$

Graded algebras

Definition: Graded algebra
$A=\oplus_{n} A_{n}$ such that $A_{i} A_{j} \subseteq A_{i+j}$.

Example

$A=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ is a graded algebra.
A_{n} : homogeneous polynomials of degree n

Graded algebras

Definition: Graded algebra
$A=\oplus_{n} A_{n}$ such that $A_{i} A_{j} \subseteq A_{i+j}$.
Example
$A=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ is a graded algebra.
A_{n} : homogeneous polynomials of degree n
Hilbert series
Hilbert $(A)=\sum_{n} \operatorname{dim}\left(A_{n}\right) z^{n}$

Graded algebras

Definition: Graded algebra
$A=\oplus_{n} A_{n}$ such that $A_{i} A_{j} \subseteq A_{i+j}$.
Example
$A=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]$ is a graded algebra.
A_{n} : homogeneous polynomials of degree n
Hilbert series
Hilbert $(A)=\sum_{n} \operatorname{dim}\left(A_{n}\right) z^{n}$
Proposition
A is finitely generated $\Longrightarrow \quad \operatorname{Hilbert}(A)=\frac{P(z)}{\left(1-z^{\left.d_{1}\right) \cdots\left(1-z^{d_{k}} k\right.}\right.}$
Example
Hilbert $\left(\mathbb{Q}\left[x, y, t^{3}\right]\right)=\frac{1}{(1-z)^{2}\left(1-z^{3}\right)}$

A strategy to prove Cameron's conjecture?

- G: an oligomorphic permutation group with polynomial profile
- Find a graded algebra $\mathbb{Q} \mathcal{A}(G)=\oplus_{n \geq 0} A_{n}$ such that

$$
\mathcal{H}_{G}=\operatorname{Hilbert}(\mathbb{Q} \mathcal{A}(G))
$$

A strategy to prove Cameron's conjecture?

- G: an oligomorphic permutation group with polynomial profile
- Find a graded algebra $\mathbb{Q} \mathcal{A}(G)=\oplus_{n \geq 0} A_{n}$ such that

$$
\mathcal{H}_{G}=\operatorname{Hilbert}(\mathbb{Q} \mathcal{A}(G))
$$

- Try to show that $\mathbb{Q} \mathcal{A}(G)$ is finitely generated

A strategy to prove Cameron's conjecture?

- G : an oligomorphic permutation group with polynomial profile
- Find a graded algebra $\mathbb{Q} \mathcal{A}(G)=\oplus_{n \geq 0} A_{n}$ such that

$$
\mathcal{H}_{G}=\operatorname{Hilbert}(\mathbb{Q} \mathcal{A}(G))
$$

- Try to show that $\mathbb{Q} \mathcal{A}(G)$ is finitely generated
- Deduce:

$$
\mathcal{H}_{G}=\frac{P(z)}{\left(1-z^{d_{1}}\right) \cdots\left(1-z^{d_{k}}\right)}
$$

and thus the quasi-polynomiality of $\varphi_{G}(n)$

Cameron, 1980: the orbit algebra $\mathbb{Q} \mathcal{A}(G)$

- a commutative connected graded algebra $\mathbb{Q} \mathcal{A}(G)=\oplus_{n \geq 0} A_{n}$
- $\operatorname{dim}\left(A_{n}\right)=\varphi_{G}(n)$

Cameron, 1980: the orbit algebra $\mathbb{Q} \mathcal{A}(G)$

- a commutative connected graded algebra $\mathbb{Q} \mathcal{A}(G)=\oplus_{n \geq 0} A_{n}$
- $\operatorname{dim}\left(A_{n}\right)=\varphi_{G}(n)$

Vector space structure

- finite formal linear combinations of orbits (ex: $2 o_{1}+5 o_{2}-o_{3}$)
- graded by degree, with $\operatorname{dim}\left(A_{n}\right)=\varphi_{G}(n)$ by construction

Cameron, 1980: the orbit algebra $\mathbb{Q} \mathcal{A}(G)$

- a commutative connected graded algebra $\mathbb{Q} \mathcal{A}(G)=\oplus_{n \geq 0} A_{n}$
- $\operatorname{dim}\left(A_{n}\right)=\varphi_{G}(n)$

Vector space structure

- finite formal linear combinations of orbits (ex: $2 o_{1}+5 o_{2}-o_{3}$)
- graded by degree, with $\operatorname{dim}\left(A_{n}\right)=\varphi_{G}(n)$ by construction

Product?

- Defined on subsets:

$$
e f= \begin{cases}e \cup f & \text { if } e \cap f=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

$\bullet o=\left\{e_{1}, e_{2}, \ldots\right\} \quad e_{1}+e_{2}+\cdots$

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

Example of product on a finite case

$$
=2
$$

Example of product on a finite case

In the end:

In the end:

Non trivial fact
Product well defined (and graded) on the space of orbits.

In the end:

Non trivial fact
Product well defined (and graded) on the space of orbits.
\longrightarrow The orbit algebra of a permutation group

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=\mathscr{P}_{3}(n)$.

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=\mathscr{P}_{3}(n)$.
$A_{n}=$ homogeneous symmetric polynomials of degree n in x_{1}, x_{2}, x_{3}

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=\mathscr{P}_{3}(n)$.
$A_{n}=$ homogeneous symmetric polynomials of degree n in x_{1}, x_{2}, x_{3}

$$
\rightarrow \mathbb{Q} \mathcal{A}\left(\mathfrak{S}_{\infty} / \mathfrak{S _ { 3 }}\right)=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]^{\mathfrak{C}_{3}}
$$

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=\mathscr{P}_{3}(n)$.
$A_{n}=$ homogeneous symmetric polynomials of degree n in x_{1}, x_{2}, x_{3}

$$
\rightarrow \mathbb{Q} \mathcal{A}\left(\mathfrak{S}_{\infty} / \mathfrak{S}_{3}\right)=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]^{\mathfrak{C}_{3}}
$$

More generally, for H subgroup of \mathfrak{S}_{m}, $\mathbb{Q} \mathcal{A}\left(\mathfrak{S}_{\infty} \backslash H\right)=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]^{H}$, the algebra of invariants of H

Overview and conjecture of Macpherson

Overview and conjecture of Macpherson

Conjecture (Macpherson, 1985)
Profile of G polynomial $\Longleftrightarrow \mathbb{Q} \mathcal{A}(G)$ finitely generated

A typical group with profile bounded by a polynomial

Ideas of the proof of the conjecture of Macpherson

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements
- infinite blocks are primitive orbits

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements
- infinite blocks are primitive orbits
- G acts as a wreath product on the orbits of finite blocks

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements
- infinite blocks are primitive orbits
- G acts as a wreath product on the orbits of finite blocks

3. After reduction, the orbits of blocks of $B(G)$ can be treated separately

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements
- infinite blocks are primitive orbits
- G acts as a wreath product on the orbits of finite blocks

3. After reduction, the orbits of blocks of $B(G)$ can be treated separately

Conclusion

The orbit algebra of the reduced group is a tensor product of algebras of type $\mathbb{K}[x], \mathbb{K}[X]{ }^{G^{\prime}}$ with some G^{\prime} finite, and possibly a finite dimensional algebra.

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements
- infinite blocks are primitive orbits
- G acts as a wreath product on the orbits of finite blocks

3. After reduction, the orbits of blocks of $B(G)$ can be treated separately

Conclusion

The orbit algebra of the reduced group is a tensor product of algebras of type $\mathbb{K}[x], \mathbb{K}[X]{ }^{G^{\prime}}$ with some G^{\prime} finite, and possibly a finite dimensional algebra.
The orbit algebra of the initial group is thus finitely generated (using Hilbert's theorem).

Ideas of the proof of the conjecture of Macpherson

1. $B(G)$ canonical block system
2. Successive reductions to a subgroup of final index

- "no" finite orbit of elements
- infinite blocks are primitive orbits
- G acts as a wreath product on the orbits of finite blocks

3. After reduction, the orbits of blocks of $B(G)$ can be treated separately

Conclusion

The orbit algebra of the reduced group is a tensor product of algebras of type $\mathbb{K}[x], \mathbb{K}[X]{ }^{G^{\prime}}$ with some G^{\prime} finite, and possibly a finite dimensional algebra.
The orbit algebra of the initial group is thus finitely generated (using Hilbert's theorem).

Thank you for your attention!

Context

- G permutation group of a countably infinite set E
- Profile φ_{G} : counts the orbits of finite subsets of E
- Hypothesis : $\varphi_{G}(n)$ bounded by a polynomial
- Conjecture (Cameron) : quasi-polynomiality of φ_{G}
- Conjecture (Macpherson) : finite generation of the orbit algebra

Results

- Both conjectures hold
- The orbit algebra is a Cohen-Macauley algebra

Question

- On what algebra ? What about higher growths ?

Finite index subgroups

Theorem
Let H be a finite index subgroup of G.

- The profiles of G and H are asymptotically equivalent
- $\mathbb{Q} \mathcal{A}(H)$ finitely generated $\Longrightarrow \mathbb{Q} \mathcal{A}(G)$ finitely generated

Finite index subgroups

Theorem

Let H be a finite index subgroup of G.

- The profiles of G and H are asymptotically equivalent
- $\mathbb{Q} \mathcal{A}(H)$ finitely generated $\Longrightarrow \mathbb{Q} \mathcal{A}(G)$ finitely generated

Proof.
Uses invariant theory, and the ideas of the proof of Hilbert's theorem.

Finite index subgroups

Theorem

Let H be a finite index subgroup of G.

- The profiles of G and H are asymptotically equivalent
- $\mathbb{Q} \mathcal{A}(H)$ finitely generated $\Longrightarrow \mathbb{Q} \mathcal{A}(G)$ finitely generated

Proof.
Uses invariant theory, and the ideas of the proof of Hilbert's theorem.
Application: reduction of Macpherson's conjecture
Without loss of generality, we may assume for instance that G has no finite orbit.
But there will be more...

Block systems

Definition: Block system
Partition of E such that each part is globally mapped onto another one (or itself) by every element of G
(see previous examples)

Block systems

Definition: Block system
Partition of E such that each part is globally mapped onto another one (or itself) by every element of G
(see previous examples)
Relevant notion?

Block systems

Definition: Block system
Partition of E such that each part is globally mapped onto another one (or itself) by every element of G
(see previous examples)
Relevant notion?

Theorem (Macpherson)
If G is primitive (i.e. admits no non trivial block system) then G has its profile equal to 1 or exponential.

Block systems

Definition: Block system
Partition of E such that each part is globally mapped onto another one (or itself) by every element of G
(see previous examples)
Relevant notion?

Theorem (Macpherson)
If G is primitive (i.e. admits no non trivial block system) then G has its profile equal to 1 or exponential.
\rightarrow The groups we are interested in have a constantly equal to 1 profile or have a block system.

The complete primitive groups

Theorem (Classification, Cameron)
There are exactly 5 complete groups of constantly equal to 1 profile.

The complete primitive groups

Theorem (Classification, Cameron)
There are exactly 5 complete groups of constantly equal to 1 profile.

- Aut (\mathbb{Q}) : automorphisms of the rational chain (increasing functions)
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q} / \mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$ and one reflection
- \mathfrak{S}_{∞} : the symmetric group

The complete primitive groups

Theorem (Classification, Cameron)
There are exactly 5 complete groups of constantly equal to 1 profile.

- Aut (\mathbb{Q}) : automorphisms of the rational chain (increasing functions)
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q} / \mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$ and one reflection
- \mathfrak{S}_{∞} : the symmetric group

Well known, nice groups.
In particular, their orbit algebra is finitely generated.

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

Or

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

- Reduction \rightarrow orbits instead of blocks

Or

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

- Reduction \rightarrow orbits instead of blocks
- $B(G) \rightarrow$ restrictions are primitive groups

Or

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$
Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

- Reduction \rightarrow orbits instead of blocks
- $B(G) \rightarrow$ restrictions are primitive groups

Or

- $B(G) \rightarrow$ action on the blocks is primitive

Transitive and canonical block systems

Proposition

If G is transitive on a block system, it either has a finite system of infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system $B(G)$

Finite blocks as big as possible, and some infinite (smallest) ones
E divided into G-orbits of blocks :

- Reduction \rightarrow orbits instead of blocks
- $B(G) \rightarrow$ restrictions are primitive groups

Or

- $B(G) \rightarrow$ action on the blocks is primitive Actually, G acts on the blocks as \mathfrak{S}_{∞}

Synchronization

Case of 2 infinite orbits
$E_{1} \sqcup E_{2}, \quad G_{\mid E_{1}}=G_{1}, \quad G_{\mid E_{2}}=G_{2}$
Synchronization between them ?

Synchronization

Case of 2 infinite orbits
$E_{1} \sqcup E_{2}, \quad G_{\mid E_{1}}=G_{1}, G_{\mid E_{2}}=G_{2}$
Synchronization between them ?
Evaluated by $G_{1} / N_{1}=G_{2} / N_{2}$, where $N_{i}=\operatorname{Fix}\left(G, E_{j}\right)_{\mid E_{i}}$

Synchronization

Case of 2 infinite orbits
$E_{1} \sqcup E_{2}, \quad G_{\mid E_{1}}=G_{1}, G_{\mid E_{2}}=G_{2}$
Synchronization between them ?
Evaluated by $G_{1} / N_{1}=G_{2} / N_{2}$, where $N_{i}=\operatorname{Fix}\left(G, E_{j}\right)_{\mid E_{i}}$
Lemma
The five complete groups of profile 1 have at most one non trivial normal subgroup.
\rightarrow very few possibilities

Synchronization

Case of 2 infinite orbits
$E_{1} \sqcup E_{2}, \quad G_{\mid E_{1}}=G_{1}, G_{\mid E_{2}}=G_{2}$
Synchronization between them ?
Evaluated by $G_{1} / N_{1}=G_{2} / N_{2}$, where $N_{i}=\operatorname{Fix}\left(G, E_{j}\right)_{\mid E_{i}}$
Lemma
The five complete groups of profile 1 have at most one non trivial normal subgroup.
\rightarrow very few possibilities

Example

If $G_{1}=G_{2}=\mathfrak{S}_{\infty}$, the actions are either independant or totally synchronized. One may assume safely, for our purposes, the same about the other four groups.

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$
Convenient fact if $E=E_{1} \sqcup E_{2}$
G_{1} and G_{2} not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G)=\mathbb{Q} \mathcal{A}\left(G_{1}\right) \otimes \mathbb{Q} \mathcal{A}\left(G_{2}\right)$

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$
Convenient fact if $E=E_{1} \sqcup E_{2}$
G_{1} and G_{2} not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G)=\mathbb{Q} \mathcal{A}\left(G_{1}\right) \otimes \mathbb{Q} \mathcal{A}\left(G_{2}\right)$
\rightarrow Orbits of blocks could be treated separately!

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$

Convenient fact if $E=E_{1} \sqcup E_{2}$
G_{1} and G_{2} not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G)=\mathbb{Q} \mathcal{A}\left(G_{1}\right) \otimes \mathbb{Q} \mathcal{A}\left(G_{2}\right)$
\rightarrow Orbits of blocks could be treated separately!

Only essential remaining case : infinite number of finite blocks

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$

Convenient fact if $E=E_{1} \sqcup E_{2}$
G_{1} and G_{2} not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G)=\mathbb{Q} \mathcal{A}\left(G_{1}\right) \otimes \mathbb{Q} \mathcal{A}\left(G_{2}\right)$
\rightarrow Orbits of blocks could be treated separately!

Only essential remaining case : infinite number of finite blocks

- Wreath products \rightarrow OK

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$

Convenient fact if $E=E_{1} \sqcup E_{2}$
G_{1} and G_{2} not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G)=\mathbb{Q} \mathcal{A}\left(G_{1}\right) \otimes \mathbb{Q} \mathcal{A}\left(G_{2}\right)$
\rightarrow Orbits of blocks could be treated separately!

Only essential remaining case: infinite number of finite blocks

- Wreath products \rightarrow OK
- Direct products \rightarrow OK

Application to the canonical block system

Works on orbits of blocks \rightarrow essentially independant in $B(G)$

Convenient fact if $E=E_{1} \sqcup E_{2}$
G_{1} and G_{2} not synchronized $\Longrightarrow \mathbb{Q} \mathcal{A}(G)=\mathbb{Q} \mathcal{A}\left(G_{1}\right) \otimes \mathbb{Q} \mathcal{A}\left(G_{2}\right)$
\rightarrow Orbits of blocks could be treated separately!

Only essential remaining case: infinite number of finite blocks

- Wreath products \rightarrow OK
- Direct products \rightarrow OK
- General case ?

The "hard case" : transitive block system of finite blocks

The "hard case" : transitive block system of finite blocks

Definition: Tower of G
$H_{0} H_{1} H_{2} \ldots$ where H_{i} is the restriction to the block $i+1$ of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

The "hard case" : transitive block system of finite blocks

Definition: Tower of G
$H_{0} H_{1} H_{2} \ldots$ where H_{i} is the restriction to the block $i+1$ of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

Proposition 1
Same tower \Longrightarrow Same orbit algebra

The "hard case" : transitive block system of finite blocks

Definition: Tower of G
$H_{0} H_{1} H_{2} \ldots$ where H_{i} is the restriction to the block $i+1$ of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

Proposition 1
Same tower \Longrightarrow Same orbit algebra
Proposition 2
The tower of G must be of shape : $H_{0} H H H \ldots$

The "hard case" : transitive block system of finite blocks

Definition: Tower of G
$H_{0} H_{1} H_{2} \ldots$ where H_{i} is the restriction to the block $i+1$ of the subgroup of G that stabilizes all the blocks and acts trivially on the first i blocks.

Proposition 1

Same tower \Longrightarrow Same orbit algebra

Proposition 2

The tower of G must be of shape : H_{0} H H H ... Thus, G has the same orbit algebra as $\frac{H_{0}}{H} \times H 2 \mathfrak{S}_{\infty}$, which is of finite index over $H \backslash \mathfrak{S}_{\infty}$.

The "hard case" : transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only :
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$

The "hard case" : transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only :
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$
2. Prove the infinite case by restricting to every subset of four consecutive blocks

The "hard case" : transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only :
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$
2. Prove the infinite case by restricting to every subset of four consecutive blocks

Conclusion about this case

The "hard case" : transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only :
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$
2. Prove the infinite case by restricting to every subset of four consecutive blocks

Conclusion about this case

- Restrictions to orbits of finite blocks may be thought of as wreath products for the sake of proving the conjecture

The "hard case" : transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only :
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$
2. Prove the infinite case by restricting to every subset of four consecutive blocks

Conclusion about this case

- Restrictions to orbits of finite blocks may be thought of as wreath products for the sake of proving the conjecture
- Solves the issue of possible finite synchronizations between different orbits of blocks

Stronger result: Cohen-Macauley algebra

- Finite generation of the orbit algebra $\Rightarrow \mathcal{H}_{G}=\frac{P(z)}{\left(1-z^{d_{1}}\right) \cdots\left(1-z^{d_{k}}\right)}$

Stronger result: Cohen-Macauley algebra

- Finite generation of the orbit algebra $\Rightarrow \mathcal{H}_{G}=\frac{P(z)}{\left(1-z^{d_{1}}\right) \cdots\left(1-z^{d_{k}}\right)}$
- Case of Cohen-Macauley algebras (free finite module over a free finitely generated algebra) : $\exists P(z)$ with positive coefficients

Stronger result: Cohen-Macauley algebra

- Finite generation of the orbit algebra $\Rightarrow \mathcal{H}_{G}=\frac{P(z)}{\left(1-z^{d_{1}} \ldots\left(1-z^{d_{k}}\right)\right.}$
- Case of Cohen-Macauley algebras (free finite module over a free finitely generated algebra) : $\exists P(z)$ with positive coefficients
- Once again, it is possible to adapt a proof of invariant theory to obtain that the orbit algebra is indeed a Cohen-Macauley algebra

Direct product in the case of finite blocks "Speak, friend..."

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

\therefore -

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$\begin{array}{lll}\bigcirc^{2} & \bigcirc & 0^{3} \\ \bigcirc & \bigcirc & \bigcirc \\ 0 & 0 & 0\end{array}$

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$
\begin{aligned}
& x \underset{\circ}{2} \quad x_{\circ} \quad x_{\circ} \stackrel{3}{\circ} \quad x_{\circ}^{2} \quad x_{\circ}^{2}
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
$\left.\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$$
\begin{array}{r}
x_{\circ} \text { ○ } \\
\\
x_{\circ} \\
\text { ○ } \\
\text { ○ }
\end{array}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \quad \longleftrightarrow \quad$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$$
\begin{aligned}
& x_{\circ}+x_{\circ} \\
& \circ \\
& x_{\circ} \\
& \circ \\
& \circ
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$$
\begin{aligned}
& x_{\circ}+x_{\circ}+x_{\circ} \\
& x_{\circ}+x_{\circ}+x_{\circ}
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?
$O\left(x_{\mathrm{g}}^{\mathrm{g}}\right)$
$O\left(x_{\mathrm{g}}^{\mathrm{g}}\right)$

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?
$\mathrm{O}\left(x_{\circ}^{\circ}\right) \cdot \mathrm{O}\left(x_{\circ}^{\circ}\right)$

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$
\begin{aligned}
& \begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& G^{\prime}=C_{3} \text { acting on (non empty) subsets } \\
& \mathbb{K}[x]^{G^{\prime}} \longleftrightarrow \text { Orbit algebra of } C_{3} \times \mathfrak{S}_{\infty} \text { ? } \\
& \mathrm{O}\left(x_{\mathrm{\circ}}^{\mathrm{g}} \mathrm{~g}\right) \cdot \mathrm{O}\left(x_{\mathrm{\circ}}\right)=\mathrm{O}\left(x_{\mathrm{\circ}}^{\mathrm{g}} \mathrm{x}_{\mathrm{\circ}}\right)+\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}} \mathrm{~g}_{\mathrm{\circ}}\right)
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3

$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?
$\mathrm{O}\left(x_{\mathrm{\circ}}\right) \cdot \mathrm{O}\left(x_{\mathrm{\circ}}\right)=\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}}\right)+\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}}\right)+\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}}\right)$

Direct product in the case of finite blocks
Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?
$\mathrm{O}\left(x_{\mathrm{\circ}}\right) \cdot \mathrm{O}\left(x_{\mathrm{\circ}}\right)=\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}}\right)+\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}}\right)+\mathrm{O}\left(x_{\mathrm{\circ}} x_{\mathrm{\circ}}\right)$
$O\left(8_{8}^{\circ}\right) . O\left(8_{8}^{\circ}\right)$

Direct product in the case of finite blocks
Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets $\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?
$\mathrm{O}\left(x_{8}\right) \cdot \mathrm{O}\left(x_{8}\right)=\mathrm{O}\left(x_{8} x_{8} x_{8}\right)+\mathrm{O}\left(x_{8} x_{8}\right)+\mathrm{O}\left(x_{8} x_{8}\right)$

Direct product in the case of finite blocks
Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$O(8) \cdot O(8)=O\left(\begin{array}{ll}\circ & \circ \\ 8 & \circ\end{array}\right)+O\left(\begin{array}{ll}\circ & \circ \\ 8 & 8\end{array}\right)$

Direct product in the case of finite blocks
Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Direct product in the case of finite blocks
Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Examples of orbit algebras (2)

More generally, for H subgroup of \mathfrak{S}_{m} :

- $G=S_{\infty}$ 亿 H :
$\mathbb{Q} \mathcal{A}(G)=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]^{H}$, the algebra of invariants of H
$\mathbb{Q} \mathcal{A}(G)$ is finitely generated by Hilbert's theorem.

- $G=H \geqslant \mathfrak{S}_{\infty}$:
$\mathbb{Q} \mathcal{A}(G)=$ the free algebra generated by the age of H

The "hard" case: case of four blocks

Lemma to prove
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$

Lemma

In the general case :
Fix $_{G}\left(B_{1}, \ldots, B_{n}\right)$ acts on the remaining blocks as \mathfrak{S}_{∞} (due to the absence of normal subgroup of finite index of \mathfrak{S}_{∞}).

Proof.
An element $s \in G$ stabilizing the blocks \leftrightarrow a quadruple $g \in H_{1} \quad \rightarrow \quad \exists(1, g, h, k), \quad h, k \in H_{1}$.
Let σ be an element of G that permutes the first two blocks and fixes the other two.
Conjugation of x by σ in $G \quad \rightarrow \quad y=\left(g^{\prime}, 1, h, k\right)$
Then: $x^{-1} y=\left(g^{\prime}, g^{-1}, 1,1\right)$
By arguing that the tower does not depend on the ordering of the blocks, g^{-1} and therefore g are in H_{2}.

