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Age and profile : example on a finite group (1)
Action of the cyclic group G = C5 on the five pearl necklace
→ induced action on subsets of pearls

Degree of an orbit : the cardinality shared by all subsets in that
orbit

Age of G : A(G) = tnA(G)n, A(G)n = {orbits of degree n}

Profile of G : ϕG : n 7→ card(A(G)n)

ϕG(0) = 1
ϕG(1) = 1
ϕG(2) = 2
ϕG(3) = 2
ϕG(4) = 1
ϕG(5) = 1
ϕG(n) = 0 si n > 5
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Age and profile of infinite permutation groups

• G : a permutation group acting on a countably infinite set E

• Classical idea in order to study a sequence of numbers (here the
profile) : to encode it into a generating series

HG =
∑
n≥0

ϕG(n)zn

• Problem : the profile may take infinite values

→ Oligomorphic permutation groups:

ϕG(n) <∞ ∀n ∈ N



Age, profile; conjecture of Cameron Conjecture of Macpherson Proof Bonus slides

Age and profile of infinite permutation groups

• G : a permutation group acting on a countably infinite set E

• Classical idea in order to study a sequence of numbers (here the
profile) : to encode it into a generating series

HG =
∑
n≥0

ϕG(n)zn

• Problem : the profile may take infinite values

→ Oligomorphic permutation groups:

ϕG(n) <∞ ∀n ∈ N



Age, profile; conjecture of Cameron Conjecture of Macpherson Proof Bonus slides

Age and profile of infinite permutation groups

• G : a permutation group acting on a countably infinite set E

• Classical idea in order to study a sequence of numbers (here the
profile) : to encode it into a generating series

HG =
∑
n≥0

ϕG(n)zn

• Problem : the profile may take infinite values

→ Oligomorphic permutation groups:

ϕG(n) <∞ ∀n ∈ N



Age, profile; conjecture of Cameron Conjecture of Macpherson Proof Bonus slides

Age and profile of infinite permutation groups

• G : a permutation group acting on a countably infinite set E

• Classical idea in order to study a sequence of numbers (here the
profile) : to encode it into a generating series

HG =
∑
n≥0

ϕG(n)zn

• Problem : the profile may take infinite values

→ Oligomorphic permutation groups:

ϕG(n) <∞ ∀n ∈ N



Age, profile; conjecture of Cameron Conjecture of Macpherson Proof Bonus slides

Wreath product of two permutation groups
G ≤ SM , H ≤ SN

G o H has a natural action on E = tN
i=1Ei , with cardEi = M.

G

H
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Examples
• G = S∞ oS∞ (action on a denumerable set of copies of N)
An orbit of degree n ←→ a partition of n
ϕG(n) = P(n), the number of partitions of n

HG = 1∏∞
i=1(1− z i)

• G = Sm oS∞
ϕG(n) = Pm(n), number of partitions into parts of size ≤ m

HG = 1∏m
i=1(1− z i)

• G = S∞ oSm
ϕG(n) = Pm(n), number of partitions into at most m parts

HG = 1∏m
i=1(1− z i)
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Conjecture of Cameron

Conjecture (Cameron, 70s)
If a profile is bounded by a polynomial it is quasi-polynomial:

ϕG(n) = as(n)ns + · · ·+ a1(n)n + a0(n),

where the ai ’s are periodic functions.

Note

HG = P(z)
(1−zd1 )···(1−zdk ) =⇒ ϕG quasi-polynomial of degree

at most k − 1
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Graded algebras

Definition: Graded algebra
A = ⊕nAn such that AiAj ⊆ Ai+j .

Example
A = K[x1, . . . , xm] is a graded algebra.
An: homogeneous polynomials of degree n

Hilbert series
Hilbert (A) =

∑
n dim(An)zn

Proposition
A is finitely generated =⇒ Hilbert (A) = P(z)

(1−zd1 )···(1−zdk )

Example
Hilbert

(
Q[x , y , t3]

)
= 1

(1−z)2(1−z3)
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A strategy to prove Cameron’s conjecture?

• G : an oligomorphic permutation group with polynomial profile
• Find a graded algebra QA(G) = ⊕n≥0An such that

HG = Hilbert (QA(G))

• Try to show that QA(G) is finitely generated

• Deduce:
HG = P(z)

(1− zd1) · · · (1− zdk )
and thus the quasi-polynomiality of ϕG(n)
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Cameron, 1980: the orbit algebra QA(G)
• a commutative connected graded algebra QA(G) = ⊕n≥0An

• dim(An) = ϕG(n)

Vector space structure

• finite formal linear combinations of orbits (ex: 2o1 + 5o2 − o3)
• graded by degree, with dim(An) = ϕG(n) by construction

Product?
• Defined on subsets:

ef =
{

e ∪ f if e ∩ f = ∅
0 otherwise

• o = {e1, e2, . . .} ←→ e1 + e2 + · · ·
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Example of product on a finite case

↔
1

2

34

5
1

2 +
1

2
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5 2

3
+

1
2

34

5

34
+

1
2
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5

4

5 +
1

2
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6

×

↔
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2
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5
1

+
1

2
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5 2 +
1

2
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5

3
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1
2
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5

4
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1
2
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————————————————————————————
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5
1
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1
2
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5
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1
2
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5
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5
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1
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3

2
1

1

3

2

+ · · ·
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In the end: × = 2 +

Non trivial fact
Product well defined (and graded) on the space of orbits.

−→ The orbit algebra of a permutation group
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Examples of orbit algebras (1)

Example 1
If G = S∞, ϕG(n) = 1 for all n, and QA(G) = K[x ].

Example 2
G = S∞ oS3, recall that ϕG(n) = P3(n).
An = homogeneous symmetric polynomials of degree n in x1, x2, x3

→ QA(S∞ oS3) = K[x1, x2, x3]S3

More generally, for H subgroup of Sm,
QA(S∞ o H) = K[x1, . . . , xm]H , the
algebra of invariants of H
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Overview and conjecture of Macpherson

Quasi-
polynomial
profile

Polynomial
profile

Orbit algebra
finitely generated

Cameron

?

Conjecture (Macpherson, 1985)
Profile of G polynomial ⇐⇒ QA(G) finitely generated
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A typical group with profile bounded by a polynomial

r

r r

c
S∞

S3

F

A1 A2 A3

Rev(Q)

S2×(Aut(Q) o C3)

· · ·
· · ·
· · ·

C1 C2 C3 · · ·

· · ·

· · ·

(S2 × C3)×S∞

B1 B2 B3 · · ·
· · ·

· · ·

S2 × (C3 oS∞)
D1 D2 D3 · · ·
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Ideas of the proof of the conjecture of Macpherson

1. B(G) canonical block system
2. Successive reductions to a subgroup of final index

• "no" finite orbit of elements
• infinite blocks are primitive orbits
• G acts as a wreath product on the orbits of finite blocks

3. After reduction, the orbits of blocks of B(G) can be treated
separately

Conclusion
The orbit algebra of the reduced group is a tensor product of algebras
of type K[x ], K[X ]G ′ with some G ′ finite, and possibly a finite
dimensional algebra.

The orbit algebra of the initial group is thus finitely generated (using
Hilbert’s theorem).

−→ The conjectures of Macpherson and Cameron hold !
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Thank you for your attention !
Context

• G permutation group of a countably infinite set E
• Profile ϕG : counts the orbits of finite subsets of E
• Hypothesis : ϕG(n) bounded by a polynomial
• Conjecture (Cameron) : quasi-polynomiality of ϕG

• Conjecture (Macpherson) : finite generation of the orbit algebra

Results
• Both conjectures hold
• The orbit algebra is a Cohen-Macauley algebra

Question
• On what algebra ? What about higher growths ?
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Finite index subgroups

Theorem
Let H be a finite index subgroup of G .

• The profiles of G and H are asymptotically equivalent
• QA(H) finitely generated =⇒ QA(G) finitely generated

Proof.
Uses invariant theory, and the ideas of the proof of Hilbert’s theorem.

Application : reduction of Macpherson’s conjecture
Without loss of generality, we may assume for instance that G has no
finite orbit.
But there will be more...
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Block systems

Definition : Block system
Partition of E such that each part is globally mapped onto another
one (or itself) by every element of G
(see previous examples)

Relevant notion?

Theorem (Macpherson)
If G is primitive (i.e. admits no non trivial block system)
then G has its profile equal to 1 or exponential.

→ The groups we are interested in have a constantly equal to 1
profile or have a block system.
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The complete primitive groups

Theorem (Classification, Cameron)
There are exactly 5 complete groups of constantly equal to 1 profile.

• Aut(Q) : automorphisms of the rational chain (increasing
functions)

• Rev(Q) : generated by Aut(Q) and one reflection
• Aut(Q/Z), preserving the circular order
• Rev(Q/Z) : generated by Aut(Q/Z) and one reflection
• S∞ : the symmetric group

Well known, nice groups.
In particular, their orbit algebra is finitely generated.
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Transitive and canonical block systems
Proposition
If G is transitive on a block system, it either has a finite system of
infinite blocks or an infinite system of finite blocks of the same size.

General case : Canonical block system B(G)
Finite blocks as big as possible, and some infinite (smallest) ones

E divided into G-orbits of blocks :

. . .

- Reduction → orbits instead of blocks
- B(G) → restrictions are primitive groups

Or

· · · · · ·
- B(G) → action on the blocks is primitive
Actually, G acts on the blocks as S∞
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Synchronization
Case of 2 infinite orbits
E1 t E2 , G|E1 = G1, G|E2 = G2

Synchronization between them ?

Evaluated by G1/N1 = G2/N2, where Ni = Fix(G ,Ej)|Ei

Lemma
The five complete groups of profile 1 have at most one non trivial
normal subgroup.
→ very few possibilities

Example
If G1 = G2 = S∞, the actions are either independant or totally
synchronized. One may assume safely, for our purposes, the same
about the other four groups.
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Application to the canonical block system

Works on orbits of blocks → essentially independant in B(G)

Convenient fact if E = E1 t E2
G1 and G2 not synchronized =⇒ QA(G) = QA(G1)⊗QA(G2)

→ Orbits of blocks could be treated separately !

Only essential remaining case : infinite number of finite blocks

• Wreath products → OK
• Direct products → OK
• General case ?
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The "hard case" : transitive block system of finite blocks
. . .

Definition : Tower of G
H0 H1 H2 . . . where Hi is the restriction to the block i + 1 of the
subgroup of G that stabilizes all the blocks and acts trivially on the
first i blocks.

Proposition 1
Same tower =⇒ Same orbit algebra

Proposition 2
The tower of G must be of shape : H0 H H H . . .
Thus, G has the same orbit algebra as H0

H × H oS∞,
which is of finite index over H oS∞.
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The "hard case" : transitive block system of finite blocks

Sketch of proof.

1. Finite case of four blocks only :
G has tower H0 H1 H2 H3 ⇒ H1 = H2

2. Prove the infinite case by restricting to every subset of four
consecutive blocks

Conclusion about this case

• Restrictions to orbits of finite blocks may be thought of as
wreath products for the sake of proving the conjecture

• Solves the issue of possible finite synchronizations between
different orbits of blocks
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Stronger result : Cohen-Macauley algebra

• Finite generation of the orbit algebra ⇒ HG = P(z)
(1−zd1 )···(1−zdk )

• Case of Cohen-Macauley algebras (free finite module over a free
finitely generated algebra) : ∃ P(z) with positive coefficients

• Once again, it is possible to adapt a proof of invariant theory to
obtain that the orbit algebra is indeed a Cohen-Macauley algebra
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C3 ×S∞ acting on blocks of size 3
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G ′ = C3 acting on (non empty) subsets
K[ x ]G ′ ←→ Orbit algebra of C3 ×S∞ ?
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Examples of orbit algebras (2)
More generally, for H subgroup of Sm :

• G = S∞ o H :
QA(G) = K[x1, . . . , xm]H , the algebra of invariants of H

QA(G) is finitely generated by Hilbert’s theorem.

• G = H oS∞ :
QA(G) = the free algebra generated by the age of H

. . . . . .
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The "hard" case : case of four blocks
Lemma to prove
G has tower H0 H1 H2 H3 ⇒ H1 = H2

Lemma
In the general case :
FixG(B1, . . . ,Bn) acts on the remaining blocks as S∞
(due to the absence of normal subgroup of finite index of S∞).

Proof.
An element s ∈ G stabilizing the blocks ↔ a quadruple
g ∈ H1 → ∃ (1, g , h, k), h, k ∈ H1.
Let σ be an element of G that permutes the first two blocks and
fixes the other two.
Conjugation of x by σ in G → y = (g ′, 1, h, k)
Then: x−1y = (g ′, g−1, 1, 1)
By arguing that the tower does not depend on the ordering of the
blocks, g−1 and therefore g are in H2.
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