Efficiency of Local Search for Geometric Combinatorial Optimisation

Bruno Jartoux & Nabil H. Mustafa ÉJCIM '18 - Loria, Nancy

LIGM, Université Paris-Est

The General HITTING SET Minimisation Problem is Hard

MINIMUM HITTING SET Given (up to) *n* points and sets, compute a smallest set of points hitting all sets.

Dashed hopes: this is fairly hard

- \times NP-hard (one of Karp's 21)
- × cannot do better in polynomial time than a $\frac{\log n}{2}$ -approximation unless P = NP

The General HITTING SET Minimisation Problem is Hard

MINIMUM HITTING SET Given (up to) *n* points and sets, compute a smallest set of points hitting all sets.

Dashed hopes: this is fairly hard

- × NP-hard (one of Karp's 21)
- × cannot do better in polynomial time than a $\frac{\log n}{2}$ -approximation unless P = NP

A Geometric HITTING SET Problem

Now the input sets are disks!

× still NP-hard

× "likely" no $(1 + \epsilon)$ -approximation in $f(\epsilon) \cdot n^c$ (W[1]-hard)

✓ (1 + ε)-approximation in n^{O(1/ε²)} [Mustafa & Ray '10]
 = a "polynomial-time approximation scheme"

Two questions for today

- How/why does this PTAS work?
- Why $1/\epsilon^2$ rather than $1/\epsilon$?

A Geometric HITTING SET Problem

Now the input sets are disks!

× still NP-hard

- × "likely" no $(1 + \epsilon)$ -approximation in $f(\epsilon) \cdot n^c$ (W[1]-hard)
- ✓ (1 + ϵ)-approximation in n^{O(1/ϵ²)} [Mustafa & Ray '10]
 = a "polynomial-time approximation scheme"

Two questions for today

- How/why does this PTAS work?
- Why $1/\epsilon^2$ rather than $1/\epsilon$?

A Geometric HITTING SET Problem

Now the input sets are disks!

× still NP-hard

- × "likely" no $(1 + \epsilon)$ -approximation in $f(\epsilon) \cdot n^c$ (W[1]-hard)
- ✓ (1 + ε)-approximation in n^{O(1/ε²)} [Mustafa & Ray '10]
 = a "polynomial-time approximation scheme"

Two questions for today

- How/why does this PTAS work?
- Why $1/\epsilon^2$ rather than $1/\epsilon$?

λ -local optimum

Any hitting set that is smallest within Hamming distance 2λ : cannot be improved by dropping λ elements and adding $\lambda - 1$. A local optimum can always be found in time $n^{O(\lambda)}$. (How?)

 $\left(1+rac{c}{\sqrt{\lambda}}
ight)\mathrm{Opt}$ in time $n^{\mathcal{O}(\lambda)}$ gives $(1+\epsilon)\mathrm{Opt}$ in time $n^{\mathcal{O}(\epsilon^{-2})}$.

The Local Search Heuristic (Is Surprisingly Efficient)

λ -local optimum

Any hitting set that is smallest within Hamming distance 2λ : cannot be improved by dropping λ elements and adding $\lambda - 1$. A local optimum can always be found in time $n^{O(\lambda)}$. (How?)

Usual problem with local optima

 $\left(1+\frac{c}{\sqrt{\lambda}}\right)$ Opt in time $n^{O(\lambda)}$ gives $(1+\epsilon)$ Opt in time $n^{O(\epsilon^{-2})}$.

The Local Search Heuristic (Is Surprisingly Efficient)

λ -local optimum

Any hitting set that is smallest within Hamming distance 2λ : cannot be improved by dropping λ elements and adding $\lambda - 1$. A local optimum can always be found in time $n^{O(\lambda)}$. (How?)

 $\left(1+\frac{c}{\sqrt{\lambda}}\right)$ Opt in time $n^{O(\lambda)}$ gives $(1+\epsilon)$ Opt in time $n^{O(\epsilon^{-2})}$.

The Local Search Heuristic (Is Surprisingly Efficient)

λ -local optimum

Any hitting set that is smallest within Hamming distance 2λ : cannot be improved by dropping λ elements and adding $\lambda - 1$. A local optimum can always be found in time $n^{O(\lambda)}$. (How?)

 $\left(1+\frac{c}{\sqrt{\lambda}}\right)$ Opt in time $n^{O(\lambda)}$ gives $(1+\epsilon)$ Opt in time $n^{O(\epsilon^{-2})}$.

Take:

\mathcal{L} a λ -locally optimal hitting set: $|\mathcal{L}| = \text{Loc}$, $(\lambda \text{ large})$

• \mathcal{O} a globally optimal hitting set: $|\mathcal{O}| = Opt$.

Bipartite graph \mathcal{G} on $\mathcal{L} \cup \mathcal{O}$: edge xy iff some disk of \mathbb{R}^2 contains only x and y.(Delaunay graph)

Claim

In particular, every input disk contains an edge! So for any $L \subseteq \mathcal{L}$, the set $(\mathcal{L} \setminus L) \cup N_{\mathcal{G}}(L)$ is also a solution.

Two key properties of $\mathcal{G} = (\mathcal{L} \cup \mathcal{O}; E)$

- **1** \mathcal{G} is planar, (can be drawn without crossing in \mathbb{R}^2)
- 2 for any $L \subseteq \mathcal{L}$, if $|L| \leq \lambda$ then $|N_{\mathcal{G}}(L)| \geq |L|$.

Take:

\mathcal{L} a λ -locally optimal hitting set: $|\mathcal{L}| = \text{Loc}$, $(\lambda \text{ large})$

• \mathcal{O} a globally optimal hitting set: $|\mathcal{O}| = \text{Opt}$.

Bipartite graph \mathcal{G} on $\mathcal{L} \cup \mathcal{O}$: edge xy iff some disk of \mathbb{R}^2 contains only x and y.(Delaunay graph)

Claim

In particular, every input disk contains an edge! So for any $L \subseteq \mathcal{L}$, the set $(\mathcal{L} \setminus L) \cup N_{\mathcal{G}}(L)$ is also a solution.

Two key properties of $\mathcal{G} = (\mathcal{L} \cup \mathcal{O}; E)$

- 1 ${\cal G}$ is planar, (can be drawn without crossing in ${\sf R}^2$)
- 2 for any $L \subseteq \mathcal{L}$, if $|L| \leq \lambda$ then $|N_{\mathcal{G}}(L)| \geq |L|$.

Take:

\mathcal{L} a λ -locally optimal hitting set: $|\mathcal{L}| = \text{Loc}$, (λ large)

• \mathcal{O} a globally optimal hitting set: $|\mathcal{O}| = \text{Opt}$.

 $\begin{array}{ll} \text{Bipartite graph } \mathcal{G} \text{ on } \mathcal{L} \cup \mathcal{O} \text{: edge } xy \text{ iff some disk of } \mathbf{R}^2 \\ \text{contains only } x \text{ and } y. \end{array} \tag{Delaunay graph}$

Claim

In particular, every input disk contains an edge! So for any $L \subseteq \mathcal{L}$, the set $(\mathcal{L} \setminus L) \cup N_{\mathcal{G}}(L)$ is also a solution.

Two key properties of $\mathcal{G} = (\mathcal{L} \cup \mathcal{O}; E)$

1 \mathcal{G} is planar, (can be drawn without crossing in \mathbb{R}^2)

2 for any $L \subseteq \mathcal{L}$, if $|L| \leq \lambda$ then $|N_{\mathcal{G}}(L)| \geq |L|$.

Recall: two key properties of $\mathcal{G} = (\mathcal{L} \cup \mathcal{O}; E)$

1 planar,

2 "
$$\lambda$$
-expanding": for any $L \subseteq \mathcal{L}$, if $|L| \leq \lambda$ then $|N_{\mathcal{G}}(L)| \geq |L|$.

Theorem (Chan & Har-Peled '09, Mustafa & Ray '10) Any bipartite graph that satisfies these two properties has

$$|\mathcal{L}| \leq \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|.$$

Proof ingredients

Planar $O(\sqrt{n})$ separators (Lipton & Tarjan '79), iterated (Frederickson '86). Then apply (2) on each piece.

Recall: two key properties of $\mathcal{G} = (\mathcal{L} \cup \mathcal{O}; E)$

1 planar,

2 "
$$\lambda$$
-expanding": for any $L \subseteq \mathcal{L}$, if $|L| \leq \lambda$ then $|N_{\mathcal{G}}(L)| \geq |L|$.

Theorem (Chan & Har-Peled '09, Mustafa & Ray '10) Any bipartite graph that satisfies these two properties has

$$|\mathcal{L}| \leq \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|.$$

Proof ingredients

Planar $O(\sqrt{n})$ separators (Lipton & Tarjan '79), iterated (Frederickson '86). Then apply (2) on each piece.

Theorem (Chan & Har-Peled '09, Mustafa & Ray '10) Any planar and λ -expanding bipartite graph has

$$|\mathcal{L}| \leq \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|.$$

Manage to replace $\sqrt{\lambda}$ with λ and our running time goes from $n^{O(1/\epsilon^2)}$ to $n^{O(1/\epsilon)}$... but...

Theorem (J. & Mustafa '18) There are planar, λ-expanding bipartite graphs with

$$|\mathcal{L}| \ge \left(1 + \frac{C'}{\sqrt{\lambda}}\right)|\mathcal{O}|.$$

Theorem (Chan & Har-Peled '09, Mustafa & Ray '10) Any planar and λ -expanding bipartite graph has

$$|\mathcal{L}| \leq \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|.$$

Manage to replace $\sqrt{\lambda}$ with λ and our running time goes from $n^{O(1/\epsilon^2)}$ to $n^{O(1/\epsilon)}$... but...

Theorem (J. & Mustafa '18) There are planar, λ-expanding bipartite graphs with

$$|\mathcal{L}| \ge \left(1 + \frac{c'}{\sqrt{\lambda}}\right)|\mathcal{O}|.$$

Theorem (Chan & Har-Peled '09, Mustafa & Ray '10) Any planar and λ -expanding bipartite graph has

$$|\mathcal{L}| \leq \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|.$$

Manage to replace $\sqrt{\lambda}$ with λ and our running time goes from $n^{O(1/\epsilon^2)}$ to $n^{O(1/\epsilon)}$... but...

Theorem (J. & Mustafa '18)

There are planar, λ -expanding bipartite graphs with

$$|\mathcal{L}| \ge \left(1 + \frac{C'}{\sqrt{\lambda}}\right)|\mathcal{O}|.$$

1 Start with a bipartite grid. $|\mathcal{L}| \simeq |\mathcal{O}|,$ ∞ -expanding.

- 2 Periodically duplicate 1 in $\sqrt{\lambda}$ blue vertex.
 - 3 This new graph is Θ(λ)-expanding. (Proof is simple but not obvious).

4 $|\mathcal{L}| \sim \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|$

1 Start with a bipartite grid. $|\mathcal{L}| \simeq |\mathcal{O}|,$ ∞ -expanding.

- 2 Periodically duplicate 1 in $\sqrt{\lambda}$ blue vertex.
- This new graph is
 Θ(λ)-expanding.
 (Proof is simple but not obvious).

4 $|\mathcal{L}| \sim \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|$

1 Start with a bipartite grid. $|\mathcal{L}| \simeq |\mathcal{O}|,$ ∞ -expanding.

- 2 Periodically duplicate 1 in $\sqrt{\lambda}$ blue vertex.
- 3 This new graph is
 Θ(λ)-expanding.
 (Proof is simple but not

obvious).

4 $|\mathcal{L}| \sim \left(1 + \frac{c}{\sqrt{\lambda}}\right) |\mathcal{O}|$

Start with a bipartite grid.
 |L| ≃ |O|, ∞-expanding.

- 2 Periodically duplicate 1 in $\sqrt{\lambda}$ blue vertex.
- 3 This new graph is $\Theta(\lambda)$ -expanding.

(Proof is simple but not obvious).

Building Instances of MINIMUM HITTING SET that Attain the Gap

Building Instances of MINIMUM HITTING SET that Attain the Gap

What we know

- We construct "bad" instances of HITTING SET FOR DISKS where local search radius has to be Θ(1/ε²).
 Also: INDEPENDENT SET, DOMINATING SET, SET COVER,...
- Extensions to graphs with separators in $O(n^{1-1/d})$: local search radius $\Theta(1/\epsilon^d)$.
- **\blacksquare** Results for small λ : planar λ -expanding graphs have

$\lambda = 3$:	$ \mathcal{L} \leq 8 \mathcal{O} $	[Bus et al. '15]
$\lambda = 4:$	$ \mathcal{L} \leq 4 \mathcal{O} $	[Antunes et al. '17]

Question

What is the correct bound on $|\mathcal{L}|/|\mathcal{O}|$ for $\lambda = 5$?