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The General Hitting Set Minimisation Problem is Hard

Minimum hitting set
Given (up to) n points and sets,
compute a smallest set of
points hitting all sets.

Dashed hopes: this is fairly hard
× NP-hard (one of Karp’s 21)
× cannot do better in polynomial time than a

log n
2 -approximation unless P = NP
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A Geometric Hitting Set Problem

Now the input sets are disks!

× still NP-hard
× “likely” no (1+ ε)-approximation in f (ε) · nc (W[1]-hard)
X (1+ ε)-approximation in nO(1/ε2) [Mustafa & Ray ’10]

= a “polynomial-time approximation scheme”

Two questions for today
How/why does this PTAS work?
Why 1/ε2 rather than 1/ε?
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The Local Search Heuristic (Is Surprisingly Efficient)

λ-local optimum
Any hitting set that is smallest within Hamming distance 2λ:
cannot be improved by dropping λ elements and adding λ− 1.
A local optimum can always be found in time nO(λ). (How?)

Usual problem with local optima

Opt

Loc

?

Lemma
For our hitting set
problem,

Loc
Opt

≤ 1+ c√
λ
.

(
1+ c√

λ

)
Opt in time nO(λ) gives (1+ ε)Opt in time nO(ε−2).
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What Goes into the Lemma – 1

Take:

L a λ-locally optimal hitting set: |L| = Loc, (λ large)
O a globally optimal hitting set: |O| = Opt.

Bipartite graph G on L ∪ O: edge xy iff some disk of R2

contains only x and y. (Delaunay graph)

Claim
In particular, every input disk contains an edge! So for any
L ⊆ L, the set (L \ L) ∪ NG(L) is also a solution.

Two key properties of G = (L ∪ O; E)
1 G is planar, (can be drawn without crossing in R2)
2 for any L ⊆ L, if |L| ≤ λ then |NG(L)| ≥ |L|.
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What Goes into the Lemma – 2

Recall: two key properties of G = (L ∪ O; E)
1 planar,
2 “λ-expanding”: for any L ⊆ L, if |L| ≤ λ then |NG(L)| ≥ |L|.

Theorem (Chan & Har-Peled ’09, Mustafa & Ray ’10)
Any bipartite graph that satisfies these two properties has

|L| ≤
(
1+ c√

λ

)
|O|.

Proof ingredients
Planar O(

√
n) separators (Lipton & Tarjan ’79), iterated

(Frederickson ’86). Then apply (2) on each piece.
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A Theorem on Planar, Locally Expanding Graphs

Theorem (Chan & Har-Peled ’09, Mustafa & Ray ’10)
Any planar and λ-expanding bipartite graph has

|L| ≤
(
1+ c√

λ

)
|O|.

Manage to replace
√
λ with λ and our running time goes from

nO(1/ε2) to nO(1/ε)… but…

Theorem (J. & Mustafa ’18)
There are planar, λ-expanding bipartite graphs with

|L| ≥
(
1+ c′√

λ

)
|O|.
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A (Roughly) Balanced Locally-Expanding Bipartite Planar Graph

λ1/4 columns

1 Start with a bipartite
grid.
|L| ' |O|,
∞-expanding.

2 Periodically duplicate 1
in

√
λ blue vertex.

3 This new graph is
Θ(λ)-expanding.
(Proof is simple but not
obvious).

4 |L| ∼
(
1+ c√

λ

)
|O|
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Building Instances of Minimum Hitting Set that Attain the Gap
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Consequences and Extensions

What we know
We construct “bad” instances of Hitting Set for Disks
where local search radius has to be Θ(1/ε2).
Also: Independent Set, Dominating Set, Set Cover,…
Extensions to graphs with separators in O(n1−1/d):
local search radius Θ(1/εd).
Results for small λ: planar λ-expanding graphs have

λ = 3 : |L| ≤ 8|O| [Bus et al. ’15]
λ = 4 : |L| ≤ 4|O| [Antunes et al. ’17]

Question
What is the correct bound on |L|/|O| for λ = 5?
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