
Continued Logarithm Algorithm.
A probabilistic study

Pablo Rotondo
IRIF, Paris 7 Diderot,

Universidad de la República, Uruguay

GREYC, associate

Work with

Brigitte Vallée and Alfredo Viola

13
31 =

2−1

1 +
2−2

1 +
2−1

1 +
20

1 +
2−1

1

EJCIM, Nancy, March, 2018.

Table of Contents

Introduction

The CL Dynamical system

Extended system and results

Conclusions and extensions

The origins

In Hakmem Gosper writes

“There is a mutation of continued fractions, which I call continued
logarithms, which have several advantages over regular continued
fractions, especially for computational hardware.

(. . .) The primary advantage is the conveniently small information parcel.

(. . .) the continued logarithm of Avogadro’s number begins with its
binary order of magnitude, and only then begins the description
equivalent to the leading digits – a sort of recursive version of scientific
notation.”

The continued logarithm algorithm computes the odd gcd and

I involves quotients that are powers of 2.

I seems simple and efficient.

I let us see an example!

The origins

In Hakmem Gosper writes

“There is a mutation of continued fractions, which I call continued
logarithms, which have several advantages over regular continued
fractions, especially for computational hardware.

(. . .) The primary advantage is the conveniently small information parcel.

(. . .) the continued logarithm of Avogadro’s number begins with its
binary order of magnitude, and only then begins the description
equivalent to the leading digits – a sort of recursive version of scientific
notation.”

The continued logarithm algorithm computes the odd gcd and

I involves quotients that are powers of 2.

I seems simple and efficient.

I let us see an example!

Continued Logarithm Algorithm?

A binary “division”:
q = 2ap+ r ,

how to choose a = a(p, q)? ⇒ pick the max!

a(p, q) = max{k ≥ 0 : 2kp ≤ q}

Example. Let us find gcd(31, 13).

a q p 2ap r

1 31 13 26 5
2 26 5 20 6
1 20 6 12 8
0 12 8 8 4
1 8 4 8 0

Remark.

I We ended up with (8, 0), what is the gcd? ⇒ odd gcd = 1.

Continued Logarithm Algorithm?

A binary “division”:
q = 2ap+ r ,

how to choose a = a(p, q)?

⇒ pick the max!

a(p, q) = max{k ≥ 0 : 2kp ≤ q}

Example. Let us find gcd(31, 13).

a q p 2ap r

1 31 13 26 5
2 26 5 20 6
1 20 6 12 8
0 12 8 8 4
1 8 4 8 0

Remark.

I We ended up with (8, 0), what is the gcd? ⇒ odd gcd = 1.

Continued Logarithm Algorithm?

A binary “division”:
q = 2ap+ r ,

how to choose a = a(p, q)? ⇒ pick the max!

a(p, q) = max{k ≥ 0 : 2kp ≤ q}

Example. Let us find gcd(31, 13).

a q p 2ap r

1 31 13 26 5
2 26 5 20 6
1 20 6 12 8
0 12 8 8 4
1 8 4 8 0

Remark.

I We ended up with (8, 0), what is the gcd? ⇒ odd gcd = 1.

Continued Logarithm Algorithm?

A binary “division”:
q = 2ap+ r ,

how to choose a = a(p, q)? ⇒ pick the max!

a(p, q) = max{k ≥ 0 : 2kp ≤ q}

Example. Let us find gcd(31, 13).

a q p 2ap r

1 31 13 26 5
2 26 5 20 6
1 20 6 12 8
0 12 8 8 4
1 8 4 8 0

Remark.

I We ended up with (8, 0), what is the gcd? ⇒ odd gcd = 1.

Continued Logarithm Algorithm?

A binary “division”:
q = 2ap+ r ,

how to choose a = a(p, q)? ⇒ pick the max!

a(p, q) = max{k ≥ 0 : 2kp ≤ q}

Example. Let us find gcd(31, 13).

a q p 2ap r

1 31 13 26 5
2 26 5 20 6
1 20 6 12 8
0 12 8 8 4
1 8 4 8 0

Remark.

I We ended up with (8, 0), what is the gcd? ⇒ odd gcd = 1.

Worst-case studied by Shallit (2016): consider (1, 2n − 1).

Response. We have at most O(log q) steps, like Euclid.

No apparent gains in number of steps

Shallit then proposed the average case as an open problem.
We considered his question...

the problem turned out to be interesting.

We provide an answer to his question,

Average number of steps K and shifts S satisfy

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = 1

log(4/3)

(
π2

6 + 2Li2(−1/2)− (log 2) log 27log 16

)
=⇒ proof turns out to be a bit unexpected.

Worst-case studied by Shallit (2016): consider (1, 2n − 1).

Response. We have at most O(log q) steps, like Euclid.
No apparent gains in number of steps

Shallit then proposed the average case as an open problem.
We considered his question...

the problem turned out to be interesting.

We provide an answer to his question,

Average number of steps K and shifts S satisfy

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = 1

log(4/3)

(
π2

6 + 2Li2(−1/2)− (log 2) log 27log 16

)
=⇒ proof turns out to be a bit unexpected.

Worst-case studied by Shallit (2016): consider (1, 2n − 1).

Response. We have at most O(log q) steps, like Euclid.
No apparent gains in number of steps

Shallit then proposed the average case as an open problem.
We considered his question...

the problem turned out to be interesting.

We provide an answer to his question,

Average number of steps K and shifts S satisfy

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = 1

log(4/3)

(
π2

6 + 2Li2(−1/2)− (log 2) log 27log 16

)
=⇒ proof turns out to be a bit unexpected.

Worst-case studied by Shallit (2016): consider (1, 2n − 1).

Response. We have at most O(log q) steps, like Euclid.
No apparent gains in number of steps

Shallit then proposed the average case as an open problem.
We considered his question...

the problem turned out to be interesting.

We provide an answer to his question,

Average number of steps K and shifts S satisfy

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = 1

log(4/3)

(
π2

6 + 2Li2(−1/2)− (log 2) log 27log 16

)

=⇒ proof turns out to be a bit unexpected.

Worst-case studied by Shallit (2016): consider (1, 2n − 1).

Response. We have at most O(log q) steps, like Euclid.
No apparent gains in number of steps

Shallit then proposed the average case as an open problem.
We considered his question...

the problem turned out to be interesting.

We provide an answer to his question,

Average number of steps K and shifts S satisfy

EN [K] ∼ k logN , EN [S] ∼ log 3−log 2
2 log 2−log 3 EN [K]

for an explicit constant k
.
= 1.49283 . . . given by

k =
2

H
, H = 1

log(4/3)

(
π2

6 + 2Li2(−1/2)− (log 2) log 27log 16

)
=⇒ proof turns out to be a bit unexpected.

Procedure summarized in

(p, q) 7→ (p′, q′) = (q − 2ap, 2ap) ,

where a = a(p, q) = max{k ≥ 0 : 2kp ≤ q}.

Note.

I The map p/q 7→ p′/q′ can be extended to I = (0, 1)

T : I → I , T (x) =
2−a

x
− 1 ,

where a = blog2(1/x)c.
I Algorithm gives rise to a continued fraction

p

q
=

2−a

1 + p′

q′

.

Procedure summarized in

(p, q) 7→ (p′, q′) = (q − 2ap, 2ap) ,

where a = a(p, q) = max{k ≥ 0 : 2kp ≤ q}.

Note.

I The map p/q 7→ p′/q′ can be extended to I = (0, 1)

T : I → I , T (x) =
2−a

x
− 1 ,

where a = blog2(1/x)c.
I Algorithm gives rise to a continued fraction

p

q
=

2−a

1 + p′

q′

.

Procedure summarized in

(p, q) 7→ (p′, q′) = (q − 2ap, 2ap) ,

where a = a(p, q) = max{k ≥ 0 : 2kp ≤ q}.

Note.

I The map p/q 7→ p′/q′ can be extended to I = (0, 1)

T : I → I , T (x) =
2−a

x
− 1 ,

where a = blog2(1/x)c.
I Algorithm gives rise to a continued fraction

p

q
=

2−a

1 + p′

q′

.

Dynamical system (I, T)

1
x

1

T(x)

The map T : I → I

Branches

For x ∈ Ia := [2−a−1, 2−a]

x 7→ T (x) :=
2−a

x
− 1 .

where a(x) := blog2(1/x)c .

Inverse branches

ha(x) :=
2−a

1 + x
, H := {ha : a ∈ N} ,

and at depth k

Hk := {ha1 ◦ · · · ◦ hak : a1, . . . , ak ∈ N} .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .

=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Density transformer
Question: If g ∈ C0(I) were the density of x =⇒ density of T (x)?

1
x

1

T(x)

|dh0(y)||dh1(y)||dh2(y)||dh3(y)|

dy

Answer: The density is

H[g](x) =
∑
h∈H

∣∣h′(x)∣∣ g (h(x))
=

1

(1 + x)2

∑
a≥0

2−a g

(
2−a

1 + x

)
.

In general T k(x) has density

Hk[g](x) =
∑
h∈Hk

∣∣h′(x)∣∣ g (h(x)) .
=⇒ Transfer operator Hs extends H, introducing a variable s

Hs[g](x) =
∑
h∈H

∣∣h′(x)∣∣s g (h(x)) .

Great!
=⇒ Apply dynamical analysis?

Principles of dynamical analysis:

Classical case: |deth| = 1 =⇒ |h′(0)| = 1/denominator2.
In our case: Cannot retrieve reduced denominator from |h′(0)|!
Problem: Denominator retrieved is engorged by powers of two.

=⇒ Need a dyadic component to mark these!

Great!
=⇒ Apply dynamical analysis?

Principles of dynamical analysis:

Classical case: |deth| = 1 =⇒ |h′(0)| = 1/denominator2.
In our case: Cannot retrieve reduced denominator from |h′(0)|!
Problem: Denominator retrieved is engorged by powers of two.

=⇒ Need a dyadic component to mark these!

Great!
=⇒ Apply dynamical analysis?

Principles of dynamical analysis:

Classical case: |deth| = 1 =⇒ |h′(0)| = 1/denominator2.

In our case: Cannot retrieve reduced denominator from |h′(0)|!
Problem: Denominator retrieved is engorged by powers of two.

=⇒ Need a dyadic component to mark these!

Great!
=⇒ Apply dynamical analysis?

Principles of dynamical analysis:

Classical case: |deth| = 1 =⇒ |h′(0)| = 1/denominator2.
In our case: Cannot retrieve reduced denominator from |h′(0)|!

Problem: Denominator retrieved is engorged by powers of two.
=⇒ Need a dyadic component to mark these!

Great!
=⇒ Apply dynamical analysis?

Principles of dynamical analysis:

Classical case: |deth| = 1 =⇒ |h′(0)| = 1/denominator2.
In our case: Cannot retrieve reduced denominator from |h′(0)|!
Problem: Denominator retrieved is engorged by powers of two.

=⇒ Need a dyadic component to mark these!

Great!
=⇒ Apply dynamical analysis?

Principles of dynamical analysis:

Classical case: |deth| = 1 =⇒ |h′(0)| = 1/denominator2.
In our case: Cannot retrieve reduced denominator from |h′(0)|!
Problem: Denominator retrieved is engorged by powers of two.

=⇒ Need a dyadic component to mark these!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility

=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator
⇒ yet the real component that “leads”.

Idea works!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility
=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator
⇒ yet the real component that “leads”.

Idea works!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility
=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator
⇒ yet the real component that “leads”.

Idea works!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility
=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator
⇒ yet the real component that “leads”.

Idea works!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility
=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator
⇒ yet the real component that “leads”.

Idea works!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility
=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator

⇒ yet the real component that “leads”.

Idea works!

Recording the dyadic behaviour

Dyadic behaviour is related to divisibility
=⇒ ... but we employ analysis!

Response: Dyadic numbers Q2 !

Dyadic topology = Divisibility by 2 constraints ,

using the dyadic norm | · |2.

I Incorporate Q2 into the Transfer Operator?

I Careful! Add dyadic component y to “real” dynamical system!

I Variations in y add powers of two to Transfer operator
⇒ yet the real component that “leads”.

Idea works!

Average behaviour of the CL algorithm
Input model:

Ω := {(p, q) : 0 < p < q, gcd(p, q) = 1} , ΩN := Ω ∩ [N]× [N] ,

take uniform probability on ΩN

⇒ expected value EN .

Result.

The mean value of steps EN [K] and shifts EN [S] performed
during the execution of the CL algorithm are Θ(logN).

We have explicit constants

EN [K] ∼ 2

H
logN , EN [S] ∼

log 3− log 2

2 log 2− log 3
EN [K] ,

here H is known as the entropy of the system,

H = 1
log(4/3)

(
π2

6 + 2Li2
(
−1

2

)
− (log 2) log 27log 16

)
,

numerically H
.
= 1.33973 . . .

Average behaviour of the CL algorithm
Input model:

Ω := {(p, q) : 0 < p < q, gcd(p, q) = 1} , ΩN := Ω ∩ [N]× [N] ,

take uniform probability on ΩN ⇒ expected value EN .

Result.

The mean value of steps EN [K] and shifts EN [S] performed
during the execution of the CL algorithm are Θ(logN).

We have explicit constants

EN [K] ∼ 2

H
logN , EN [S] ∼

log 3− log 2

2 log 2− log 3
EN [K] ,

here H is known as the entropy of the system,

H = 1
log(4/3)

(
π2

6 + 2Li2
(
−1

2

)
− (log 2) log 27log 16

)
,

numerically H
.
= 1.33973 . . .

Average behaviour of the CL algorithm
Input model:

Ω := {(p, q) : 0 < p < q, gcd(p, q) = 1} , ΩN := Ω ∩ [N]× [N] ,

take uniform probability on ΩN ⇒ expected value EN .

Result.

The mean value of steps EN [K] and shifts EN [S] performed
during the execution of the CL algorithm are Θ(logN).

We have explicit constants

EN [K] ∼ 2

H
logN , EN [S] ∼

log 3− log 2

2 log 2− log 3
EN [K] ,

here H is known as the entropy of the system,

H = 1
log(4/3)

(
π2

6 + 2Li2
(
−1

2

)
− (log 2) log 27log 16

)
,

numerically H
.
= 1.33973 . . .

Average behaviour of the CL algorithm
Input model:

Ω := {(p, q) : 0 < p < q, gcd(p, q) = 1} , ΩN := Ω ∩ [N]× [N] ,

take uniform probability on ΩN ⇒ expected value EN .

Result.

The mean value of steps EN [K] and shifts EN [S] performed
during the execution of the CL algorithm are Θ(logN).

We have explicit constants

EN [K] ∼ 2

H
logN , EN [S] ∼

log 3− log 2

2 log 2− log 3
EN [K] ,

here H is known as the entropy of the system,

H = 1
log(4/3)

(
π2

6 + 2Li2
(
−1

2

)
− (log 2) log 27log 16

)
,

numerically H
.
= 1.33973 . . .

The extended dynamical system

~ Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

~ For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 does satisfy∫
Q2

F (y)dν(y) =

∫
Q2

F (h(y))|h′(y)|2dν(y) .

=⇒ Consider related measure ν̃ on Q2 !
⇒ extended transfer operator Hs.

The extended dynamical system

~ Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

~ For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 does satisfy∫
Q2

F (y)dν(y) =

∫
Q2

F (h(y))|h′(y)|2dν(y) .

=⇒ Consider related measure ν̃ on Q2 !
⇒ extended transfer operator Hs.

The extended dynamical system

~ Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

~ For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 does satisfy∫
Q2

F (y)dν(y) =

∫
Q2

F (h(y))|h′(y)|2dν(y) .

=⇒ Consider related measure ν̃ on Q2 !
⇒ extended transfer operator Hs.

The extended dynamical system

~ Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

~ For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 does satisfy∫
Q2

F (y)dν(y) =

∫
Q2

F (h(y))|h′(y)|2dν(y) .

=⇒ Consider related measure ν̃ on Q2 !
⇒ extended transfer operator Hs.

The extended dynamical system

~ Introduce I := I ×Q2 and T : I → I as follows

T (x, y) = (Ta(x), Ta(y)) ,

for x ∈ Ia = [2−a−1, 2−a]. This gives inverse branches

ha(x, y) = (ha(x), ha(y)) , (x, y) ∈ I .

Evolution is lead by the real component, which determines a.

~ For Transfer operator ⇒ need change of variables formula!

Haar (translation invariant) measure ν on Q2 does satisfy∫
Q2

F (y)dν(y) =

∫
Q2

F (h(y))|h′(y)|2dν(y) .

=⇒ Consider related measure ν̃ on Q2 !
⇒ extended transfer operator Hs.

Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability of

y 7→ sup
x
Fy , and y 7→ sup

x
∂xFy .

Ensuing space F makes Hs

I act on F for <s > 1/2 ⇒ big enough set of s.

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability of

y 7→ sup
x
Fy , and y 7→ sup

x
∂xFy .

Ensuing space F makes Hs

I act on F for <s > 1/2 ⇒ big enough set of s.

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Functional space F for the extended operator Hs

Real component directs the dynamical system:

I sections Fy fixing y ∈ Q2 asked to be C1(I).
I the dyadic component follows, demanding only integrability of

y 7→ sup
x
Fy , and y 7→ sup

x
∂xFy .

Ensuing space F makes Hs

I act on F for <s > 1/2 ⇒ big enough set of s.

I have a dominant eigenvalue and spectral gap
relying strongly on the real component.

We can finish the dynamical analysis!

Conclusion and further questions

Conclusions:
~ We have studied the average number of shifts and substractions
for the CL algorithm.
~ Study makes an interesting use of the dyadics in the framework
of dynamical analysis.

Questions:

1. Bit complexity?

2. Comparison to other binary algorithms: binary GCD, LSB.

3. Conjecture: During long developments, gcd(p, q) is a power
of two with exponent ∼ #steps/2 .

4. Expansion for real numbers: work in progress!

Conclusion and further questions

Conclusions:
~ We have studied the average number of shifts and substractions
for the CL algorithm.
~ Study makes an interesting use of the dyadics in the framework
of dynamical analysis.

Questions:

1. Bit complexity?

2. Comparison to other binary algorithms: binary GCD, LSB.

3. Conjecture: During long developments, gcd(p, q) is a power
of two with exponent ∼ #steps/2 .

4. Expansion for real numbers: work in progress!

Conclusion and further questions

Conclusions:
~ We have studied the average number of shifts and substractions
for the CL algorithm.
~ Study makes an interesting use of the dyadics in the framework
of dynamical analysis.

Questions:

1. Bit complexity?

2. Comparison to other binary algorithms: binary GCD, LSB.

3. Conjecture: During long developments, gcd(p, q) is a power
of two with exponent ∼ #steps/2 .

4. Expansion for real numbers: work in progress!

Conclusion and further questions

Conclusions:
~ We have studied the average number of shifts and substractions
for the CL algorithm.
~ Study makes an interesting use of the dyadics in the framework
of dynamical analysis.

Questions:

1. Bit complexity?

2. Comparison to other binary algorithms: binary GCD, LSB.

3. Conjecture: During long developments, gcd(p, q) is a power
of two with exponent ∼ #steps/2 .

4. Expansion for real numbers: work in progress!

Conclusion and further questions

Conclusions:
~ We have studied the average number of shifts and substractions
for the CL algorithm.
~ Study makes an interesting use of the dyadics in the framework
of dynamical analysis.

Questions:

1. Bit complexity?

2. Comparison to other binary algorithms: binary GCD, LSB.

3. Conjecture: During long developments, gcd(p, q) is a power
of two with exponent ∼ #steps/2 .

4. Expansion for real numbers: work in progress!

	Introduction
	The CL Dynamical system
	Extended system and results
	Conclusions and extensions

