
Efficient decoding of random errors for quantum
expander codes

Omar Fawzi & Antoine Grospellier & Anthony Leverrier

February 13, 2018

A. Grospellier Efficient decoding of random errors for quantum expander codes 1/20



Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT ))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT )) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”

A. Grospellier Efficient decoding of random errors for quantum expander codes 2/20



Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT ))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT )) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”

A. Grospellier Efficient decoding of random errors for quantum expander codes 2/20



Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT ))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT )) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”

A. Grospellier Efficient decoding of random errors for quantum expander codes 2/20



Content of the talk

1 Classical error correction

2 Quantum error correction

3 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 3/20



Outline

1 Classical error correction

2 Quantum error correction

3 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 4/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

Without error correcting codes

FAILURE: m̃ 6= m

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

Without error correcting codes

FAILURE: m̃ 6= m

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

Without error correcting codes
FAILURE: m̃ 6= m

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes

Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes

Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes

Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes

Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes

Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes

Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes
Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes
Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

With error correcting codes
Success condition: m̂ = m or equivalently ĉ = c

Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Factor graph of a code


0 1 1
1 1 0
0 0 1
1 0 0
1 1 0
0 1 1



0

1

2

3

4

5

6

7

8

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 6/20



The bit-flip decoding algorithm

Error:
e0 = {0, 1, 2}
Unsatisfied check-nodes
(syndrome):
{10, 12, 14, 19}
Satisfied check-nodes:
{11, 13, 15,
16, 17, 18}

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 7/20



The bit-flip decoding algorithm

Input: {10, 12, 14, 19}
(syndrome)

The error e0 is unknown

Output: e
a set of bits

Success condition:
e = e0

The algorithm flips a bit
when it decreases the
syndrome

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 7/20



Decoding algorithm: first example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

0

1

2

10

12

13

14

16

19

A. Grospellier Efficient decoding of random errors for quantum expander codes 8/20



Decoding algorithm: first example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

0

1

2

10

12

13

14

16

19

A. Grospellier Efficient decoding of random errors for quantum expander codes 8/20



Decoding algorithm: first example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

0

1

2

10

12

13

14

16

19

A. Grospellier Efficient decoding of random errors for quantum expander codes 8/20



Decoding algorithm: first example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

0

1

2

10

12

13

14

16

19

A. Grospellier Efficient decoding of random errors for quantum expander codes 8/20



Decoding algorithm: second example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 9/20



Decoding algorithm: second example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 9/20



Decoding algorithm: second example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 9/20



Decoding algorithm: second example

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 9/20



Outline

1 Classical error correction

2 Quantum error correction

3 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 10/20



Quantum error correction

Alice Bob

|ϕ〉 ∈ C2k

|ϕ〉 : k qubits state

Noisy
channel

|ψ〉 ∈ Q ⊆ C2n

, n > k
|ψ〉 : n qubits state

|̃ψ〉 ∈ C2n

|̃ψ〉 = E |ψ〉

|̂ψ〉 ∈ Q
|̂ψ〉 : a guess for |ψ〉

|̂ϕ〉 ∈ C2k

|̂ϕ〉 : a guess for |ϕ〉

Bit: b ∈ F2 Qubit: |b〉 ∈ C2, ‖ |b〉 ‖2 = 1

A [n, k]-code is a k-dimensional
subspace of Fn

2

A Jn, kK-code is a
2k -dimensional subspace of C2n

Classical error: Flip Quantum errors: X and Z

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
A. Grospellier Efficient decoding of random errors for quantum expander codes 11/20



Example: the toric code

n qubits on edges

X -type generators associated with vertices

Z -type generators associated with
plaquettes

k = #holes = 2

d = systole =
√
n/2

Numerical simulations: 10% rate random
errors are corrected

Adversarial errors VS Random errors:

“Corrects adversarial errors of size up to Θ(
√
n)”: any error of size

up to Θ(
√
n) is corrected

→ Link with the minimal distance

“Corrects random errors of size Θ(n)”: an error where qubits are
flipped with probability p independently is corrected with high
probability
→ Framework of our result

A. Grospellier Efficient decoding of random errors for quantum expander codes 12/20



Example: the toric code

n qubits on edges

X -type generators associated with vertices

Z -type generators associated with
plaquettes

k = #holes = 2

d = systole =
√
n/2

Numerical simulations: 10% rate random
errors are corrected

Adversarial errors VS Random errors:

“Corrects adversarial errors of size up to Θ(
√
n)”: any error of size

up to Θ(
√
n) is corrected

→ Link with the minimal distance

“Corrects random errors of size Θ(n)”: an error where qubits are
flipped with probability p independently is corrected with high
probability
→ Framework of our result

A. Grospellier Efficient decoding of random errors for quantum expander codes 12/20



Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general

A. Grospellier Efficient decoding of random errors for quantum expander codes 13/20



Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general

A. Grospellier Efficient decoding of random errors for quantum expander codes 13/20



Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general

A. Grospellier Efficient decoding of random errors for quantum expander codes 13/20



Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Very high probability: P(correction) = 1− o(1/nc) for all c ∈ N

Main Theorem

Quantum expander codes have an efficient decoder

Consequence:

We can apply [Gottesman, ’13] with quantum expander codes

Fault-tolerant quantum computation with constant overhead is
possible

A. Grospellier Efficient decoding of random errors for quantum expander codes 14/20



Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Very high probability: P(correction) = 1− o(1/nc) for all c ∈ N

Main Theorem

Quantum expander codes have an efficient decoder

Consequence:

We can apply [Gottesman, ’13] with quantum expander codes

Fault-tolerant quantum computation with constant overhead is
possible

A. Grospellier Efficient decoding of random errors for quantum expander codes 14/20



Outline

1 Classical error correction

2 Quantum error correction

3 Our contribution

A. Grospellier Efficient decoding of random errors for quantum expander codes 15/20



Summary of our contribution

Question: What happens for random errors of size Θ(n)?

Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Idea. The algorithm is local with respect to the adjacency graph

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Bits Check-nodes

0

1

2

3

4

5

6

7

8

9

A. Grospellier Efficient decoding of random errors for quantum expander codes 16/20



A. Grospellier Efficient decoding of random errors for quantum expander codes 17/20



A. Grospellier Efficient decoding of random errors for quantum expander codes 17/20



A. Grospellier Efficient decoding of random errors for quantum expander codes 17/20



A. Grospellier Efficient decoding of random errors for quantum expander codes 17/20



The number of flips is linear in the size of the initial error

Definition: α-subset, α ∈ (0, 1]

X is an α-subset of E if |X ∩ E | ≥ α|X |

Each connected component X is an α-subset of {red dots}

A. Grospellier Efficient decoding of random errors for quantum expander codes 18/20



Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected

A. Grospellier Efficient decoding of random errors for quantum expander codes 19/20



Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected

A. Grospellier Efficient decoding of random errors for quantum expander codes 19/20



Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected

A. Grospellier Efficient decoding of random errors for quantum expander codes 19/20



Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/20



Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/20



Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention

A. Grospellier Efficient decoding of random errors for quantum expander codes 20/20



Known constructions of quantum LDPC codes

k Correction up to size Efficient correction up to size

Toric code [Kit03] 2 Θ(
√
n) Θ(

√
n)

Hyperbolic 2D [FML02] Θ(n) Θ(log n) Θ(log n)
Hyperbolic 4D
[GL14], [Has13], [LL17]

Θ(n) Ω(n0.2),O(n0.3) Θ(log n)

Expander codes
[TZ14], [LTZ15]

Θ(n) Θ(
√
n) Θ(

√
n)

[Kit03] A Yu Kitaev. Fault-tolerant quantum computation by anyons, 2003

[FML02] Michael H Freedman, David A Meyer, and Feng Luo. Z2-systolic freedom and quantum
codes, 2002

[GL14] Larry Guth and Alexander Lubotzky. Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds, 2014

[Has13] Matthew B Hastings. Decoding in hyperbolic spaces: Ldpc codes with linear rate and
efficient error correction, 2013

[LL17] Vivien Londe and Anthony Leverrier. Golden codes: quantum ldpc codes built from regular
tessellations of hyperbolic 4-manifolds, 2017

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum ldpc codes with positive rate and minimum
distance proportional to the square root of the blocklength, 2014

[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes, 2015

A. Grospellier Efficient decoding of random errors for quantum expander codes 21/20



n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/20



n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/20



n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/20



n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/20



n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/20



n = 10,m = 5, d1 = 2, d2 = n
md1 = 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A. Grospellier Efficient decoding of random errors for quantum expander codes 22/20



Stabilizer codes

Definition stabilizer codes: given a set g1, . . . , gn−k of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q =
{
|ψ〉 ∈ C2n

: g1 |ψ〉 = |ψ〉 · · · gn−k |ψ〉 = |ψ〉
}

Parameters of a stabilizer code Jn, k, dK:

Q encodes k logical qubits into n physical qubits
i.e Q is a 2k dimensional subspace of C2n

A logical error L is a Pauli operator such that [L, gi ] = 0 for all i and
L /∈ 〈g1, . . . , gn−k〉
The minimal distance d is the minimal weight of a logical error

A. Grospellier Efficient decoding of random errors for quantum expander codes 23/20



Stabilizer codes

Definition stabilizer codes: given a set g1, . . . , gn−k of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q =
{
|ψ〉 ∈ C2n

: g1 |ψ〉 = |ψ〉 · · · gn−k |ψ〉 = |ψ〉
}

Parameters of a stabilizer code Jn, k , dK:

Q encodes k logical qubits into n physical qubits
i.e Q is a 2k dimensional subspace of C2n

A logical error L is a Pauli operator such that [L, gi ] = 0 for all i and
L /∈ 〈g1, . . . , gn−k〉
The minimal distance d is the minimal weight of a logical error

A. Grospellier Efficient decoding of random errors for quantum expander codes 23/20



The CSS construction

Definition [Calderbank & Shor ’95], [Steane ’95]

We can construct a quantum error correcting code using CX and CZ two
classical error correcting codes such that C⊥X ⊆ CZ

Each generator g1, . . . , gn−k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes
which are orthogonal

A. Grospellier Efficient decoding of random errors for quantum expander codes 24/20



The CSS construction

Definition [Calderbank & Shor ’95], [Steane ’95]

We can construct a quantum error correcting code using CX and CZ two
classical error correcting codes such that C⊥X ⊆ CZ

Each generator g1, . . . , gn−k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes
which are orthogonal

A. Grospellier Efficient decoding of random errors for quantum expander codes 24/20



Hypergraph product codes [Tillich & Zémor ’09]

The parity check matrix H of a classical code C satisfies C = kerH.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.
We define the two classical codes CX and CZ by their parity check
matrices:

HX = (1⊗ H,HT ⊗ 1) HZ = (H ⊗ 1,1⊗ HT )

Then C⊥X ⊆ CZ

Definition

The hypergraph product is defined as CSS(CX , CZ ).
It’s a constant rate code with minimal distance d = Θ(

√
n)

Freedom to choose H

[Leverrier & Tillich & Zémor ’15] chooses H as the parity
check-matrix of a “classical expander code” ([Sipser & Spielman,
’96])

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/20



Hypergraph product codes [Tillich & Zémor ’09]

The parity check matrix H of a classical code C satisfies C = kerH.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.
We define the two classical codes CX and CZ by their parity check
matrices:

HX = (1⊗ H,HT ⊗ 1) HZ = (H ⊗ 1,1⊗ HT )

Then C⊥X ⊆ CZ

Definition

The hypergraph product is defined as CSS(CX , CZ ).
It’s a constant rate code with minimal distance d = Θ(

√
n)

Freedom to choose H

[Leverrier & Tillich & Zémor ’15] chooses H as the parity
check-matrix of a “classical expander code” ([Sipser & Spielman,
’96])

A. Grospellier Efficient decoding of random errors for quantum expander codes 25/20



Classical expander codes

The parity check matrix H of a classical code C satisfies C = kerH
H represented by a factor graph


0 1 1
1 1 0
0 0 1
1 0 0
1 1 0
0 1 1



0

1

2

3

4

5

6

7

8

Bits Check-nodes

A. Grospellier Efficient decoding of random errors for quantum expander codes 26/20



Classical expander codes

The parity check matrix H of a classical code C satisfies C = kerH
H represented by a factor graph

Definition of a (γ, δ) expander graph

For all S ⊆ {Bits}, if |S | ≤ γn then:

|Γ(S)| ≥ (1− δ)d1|S |
|Γ(S)| ≤ d1|S |

Expander graph
→ Parity check matrix
→ Classical expander code
→ Quantum expander code

Bits Check-nodes

d
2

d
1

S

Г(S)

A. Grospellier Efficient decoding of random errors for quantum expander codes 26/20



Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes

A. Grospellier Efficient decoding of random errors for quantum expander codes 27/20



Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes

A. Grospellier Efficient decoding of random errors for quantum expander codes 27/20



Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes

A. Grospellier Efficient decoding of random errors for quantum expander codes 27/20


	Classical error correction
	Quantum error correction
	Our contribution

