Efficient decoding of random errors for quantum expander codes

Omar Fawzi & Antoine Grospellier & Anthony Leverrier

February 13, 2018

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical qubits by a fault-tolerant circuit with noisy gates and $\mathcal{O}(m \operatorname{polylog}(mT))$ physical qubits.

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical qubits by a fault-tolerant circuit with noisy gates and $\mathcal{O}(m \operatorname{polylog}(mT))$ physical qubits.

- Practice: break RSA with 4000 logical qubits, but $10^6 10^9$ physical qubits
- [Gottesman, '13] improved this result using constant rate quantum codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, '13]

Provided codes with nice properties exist, the ratio physical/logical qubits can be made constant: $\mathcal{O}(m \operatorname{polylog}(mT)) \rightsquigarrow \mathcal{O}(m)$

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical qubits by a fault-tolerant circuit with noisy gates and $\mathcal{O}(m \operatorname{polylog}(mT))$ physical qubits.

- Practice: break RSA with 4000 logical qubits, but $10^6-10^9\ {\rm physical}\ {\rm qubits}$
- [Gottesman, '13] improved this result using constant rate quantum codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, '13]

Provided codes with nice properties exist, the ratio physical/logical qubits can be made constant: $\mathcal{O}(m \operatorname{polylog}(mT)) \sim \mathcal{O}(m)$

- Before this work, no existing codes had these "nice properties"
- We proved that quantum expander codes have these "nice properties"

Content of the talk

Outline

Quantum error correction

Our contribution

A. Grospellier

Without error correcting codes **FAILURE:** $\widetilde{m} \neq m$

With error correcting codes Success condition: $\hat{m} = m$ or equivalently $\hat{c} = c$

With error correcting codes Success condition: $\hat{m} = m$ or equivalently $\hat{c} = c$

With error correcting codes Success condition: $\hat{m} = m$ or equivalently $\hat{c} = c$

Definition: classical error correcting codes

- A [n, k]-error correcting code is a k-dimensional subspace of 𝔽ⁿ₂
- $H \in \mathcal{M}_{n-k,n}$ is a parity check matrix for a code \mathcal{C} if $\mathcal{C} = \ker H$

Factor graph of a code

The bit-flip decoding algorithm

• Error:

 $e_0 = \{0, 1, 2\}$

- Unsatisfied check-nodes (syndrome): {10, 12, 14, 19}
- Satisfied check-nodes: {11, 13, 15, 16, 17, 18}

The bit-flip decoding algorithm

- Input: {10, 12, 14, 19} (syndrome)
- The error e_0 is unknown
- Output: *e* a set of bits
- Success condition:
 - $e = e_0$
- The algorithm flips a bit when it decreases the syndrome

Outline

Quantum error correction

• Bit: $b \in \mathbb{F}_2$

- A [n, k]-code is a k-dimensional subspace of 𝔽ⁿ₂
- Classical error: Flip

- Qubit: $|b
 angle\in\mathbb{C}^2$, $\|\ket{b}\|_2=1$
- A [[n, k]]-code is a 2^k-dimensional subspace of C^{2ⁿ}
- Quantum errors: X and Z

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Example: the toric code

- n qubits on edges
- X-type generators associated with vertices
- Z-type generators associated with plaquettes
- k = # holes = 2
- $d = \text{systole} = \sqrt{n/2}$
- Numerical simulations: 10% rate random errors are corrected

Example: the toric code

- n qubits on edges
- X-type generators associated with vertices
- Z-type generators associated with plaquettes
- k = # holes = 2
- $d = \text{systole} = \sqrt{n/2}$
- Numerical simulations: 10% rate random errors are corrected

Adversarial errors VS Random errors:

- "Corrects adversarial errors of size up to Θ(√n)": any error of size up to Θ(√n) is corrected
 → Link with the minimal distance
- "Corrects random errors of size Θ(n)": an error where qubits are flipped with probability p independently is corrected with high probability
 - \rightarrow Framework of our result

Initial problem:

- The best known minimal distance for a constant rate LDPC code is $\Theta(\sqrt{n} \sqrt[4]{\log(n)})$ ([Freedman & Meyer & Luo '02])
- We want to correct random errors of size $\Theta(n)$ with very high probability

Initial problem:

- The best known minimal distance for a constant rate LDPC code is $\Theta(\sqrt{n} \sqrt[4]{\log(n)})$ ([Freedman & Meyer & Luo '02])
- We want to correct random errors of size Θ(n) with very high probability

Solution given by [Dennis & Kitaev & Landahl & Preskill '01], [Kovalev & Pryadko '13]:

- Use of graph percolation theory
- Given a constant rate LDPC code with minimal distance d = Ω(n^ε), the maximum likelihood decoder corrects random errors of size Θ(n) with very high probability

Initial problem:

- The best known minimal distance for a constant rate LDPC code is $\Theta(\sqrt{n} \sqrt[4]{\log(n)})$ ([Freedman & Meyer & Luo '02])
- We want to correct random errors of size Θ(n) with very high probability

Solution given by [Dennis & Kitaev & Landahl & Preskill '01], [Kovalev & Pryadko '13]:

- Use of graph percolation theory
- Given a constant rate LDPC code with minimal distance d = Ω(n^ε), the maximum likelihood decoder corrects random errors of size Θ(n) with very high probability

Remaining problem:

• The maximum likelihood decoder is exponential time in general

Efficient decoder

There is a polynomial time decoder which corrects random errors of size $\Theta(n)$ with very high probability

• Very high probability: $\mathbb{P}(ext{correction}) = 1 - o(1/n^c)$ for all $c \in \mathbb{N}$

Main Theorem

Quantum expander codes have an efficient decoder

Efficient decoder

There is a polynomial time decoder which corrects random errors of size $\Theta(n)$ with very high probability

• Very high probability: $\mathbb{P}(ext{correction}) = 1 - o(1/n^c)$ for all $c \in \mathbb{N}$

Main Theorem

Quantum expander codes have an efficient decoder

Consequence:

- We can apply [Gottesman, '13] with quantum expander codes
- Fault-tolerant quantum computation with constant overhead is possible

Outline

Summary of our contribution

Question: What happens for random errors of size $\Theta(n)$?

Theorem: what we proved

For a probability of error $p < p_{ ext{th}}$: $\mathbb{P}(ext{small-set-flip corrects the error}) = 1 - 1/e^{\Omega(\sqrt{n})}$

The number of flips is linear in the size of the initial error

Definition: α -subset, $\alpha \in (0, 1]$ X is an α -subset of E if $|X \cap E| \ge \alpha |X|$

• Each connected component *X* is an *α*-subset of {red dots}

Theorem: what we proved

For a probability of error $p < p_{
m th}$: $\mathbb{P}(
m small-set-flip \ corrects \ the \ error) = 1 - 1/e^{\Omega(\sqrt{n})}$

Theorem: what we proved

For a probability of error $p < p_{\text{th}}$: $\mathbb{P}(\text{small-set-flip corrects the error}) = 1 - 1/e^{\Omega(\sqrt{n})}$

Key lemma: percolation

Let $\alpha \in (0, 1]$ and a probability of error $p < cst(\alpha, d)$. With probability $1 - 1/e^{\Omega(\sqrt{n})}$:

• If X is a connected α -subset of the error then $|X| < c\sqrt{n}$

Theorem: what we proved

For a probability of error $p < p_{\text{th}}$: $\mathbb{P}(\text{small-set-flip corrects the error}) = 1 - 1/e^{\Omega(\sqrt{n})}$

Key lemma: percolation

Let $\alpha \in (0, 1]$ and a probability of error $p < cst(\alpha, d)$. With probability $1 - 1/e^{\Omega(\sqrt{n})}$:

• If X is a connected α -subset of the error then $|X| < c\sqrt{n}$

Sketch of the proof of the theorem:

Take a random error and run the small-set-flip algorithm. Let X be a connected component of the marked qubits:

- X is an α-subset of the error
- $|X| < c\sqrt{n}$
- X is corrected

This is true for any $X \rightarrow$ the entire error is corrected

Conclusion

Quantum expander codes:

- Are LDPC quantum codes
- Have a constant rate
- Have a good minimal distance: $d = \Theta(\sqrt{n})$

The decoder:

- Corrects any adversarial error of size up to $\Theta(\sqrt{n})$
- For a probability of error $p < p_{\mathsf{th}} : \mathbb{P}(\mathsf{correction}) = 1 1/e^{\Omega(\sqrt{n})}$

Corollary:

• Fault tolerant quantum computation with constant overhead is possible

Conclusion

Quantum expander codes:

- Are LDPC quantum codes
- Have a constant rate
- Have a good minimal distance: $d = \Theta(\sqrt{n})$

The decoder:

- Corrects any adversarial error of size up to $\Theta(\sqrt{n})$
- For a probability of error $p < p_{\mathsf{th}} : \mathbb{P}(\mathsf{correction}) = 1 1/e^{\Omega(\sqrt{n})}$

Corollary:

• Fault tolerant quantum computation with constant overhead is possible

Future work ($p_{\rm th} \sim 10^{-16}$):

- Run simulations
- Improve our numerical value for the threshold

Conclusion

Quantum expander codes:

- Are LDPC quantum codes
- Have a constant rate
- Have a good minimal distance: $d = \Theta(\sqrt{n})$

The decoder:

- Corrects any adversarial error of size up to $\Theta(\sqrt{n})$
- For a probability of error $p < p_{\mathsf{th}} : \mathbb{P}(\mathsf{correction}) = 1 1/e^{\Omega(\sqrt{n})}$

Corollary:

• Fault tolerant quantum computation with constant overhead is possible

Future work ($p_{\rm th} \sim 10^{-16}$):

- Run simulations
- Improve our numerical value for the threshold

Thank you for your attention

Known constructions of quantum LDPC codes

	k	Correction up to size	Efficient correction up to size
Toric code [Kit03]	2	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
Hyperbolic 2D [FML02]	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hyperbolic 4D [GL14], [Has13], [LL17]	$\Theta(n)$	$\Omega(n^{0.2}), \mathcal{O}(n^{0.3})$	$\Theta(\log n)$
Expander codes [TZ14], [LTZ15]	$\Theta(n)$	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$

[Kit03] A Yu Kitaev. Fault-tolerant quantum computation by anyons, 2003

[FML02] Michael H Freedman, David A Meyer, and Feng Luo. Z2-systolic freedom and quantum codes, 2002

[GL14] Larry Guth and Alexander Lubotzky. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds, 2014

[Has13] Matthew B Hastings. Decoding in hyperbolic spaces: Ldpc codes with linear rate and efficient error correction, 2013

[LL17] Vivien Londe and Anthony Leverrier. Golden codes: quantum ldpc codes built from regular tessellations of hyperbolic 4-manifolds, 2017

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength, 2014

[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes, 2015

$$n = 10, m = 5, d_1 = 2, d_2 = \frac{n}{m}d_1 = 4$$

Stabilizer codes

Definition stabilizer codes: given a set g_1, \ldots, g_{n-k} of commuting Pauli operators (product of X and Z Pauli matrices) on n qubits (called generators), we define a quantum code Q by:

$$\mathcal{Q} = \left\{ \ket{\psi} \in \mathbb{C}^{2^n} : g_1 \ket{\psi} = \ket{\psi} \cdots g_{n-k} \ket{\psi} = \ket{\psi}
ight\}$$

Stabilizer codes

Definition stabilizer codes: given a set g_1, \ldots, g_{n-k} of commuting Pauli operators (product of X and Z Pauli matrices) on n qubits (called generators), we define a quantum code Q by:

$$\mathcal{Q} = \left\{ \ket{\psi} \in \mathbb{C}^{2^n} : g_1 \ket{\psi} = \ket{\psi} \cdots g_{n-k} \ket{\psi} = \ket{\psi} \right\}$$

Parameters of a stabilizer code [[n, k, d]]:

- *Q* encodes k logical qubits into n physical qubits
 i.e *Q* is a 2^k dimensional subspace of C^{2ⁿ}
- A logical error L is a Pauli operator such that $[L, g_i] = 0$ for all i and $L \notin \langle g_1, \dots, g_{n-k} \rangle$
- The minimal distance d is the minimal weight of a logical error

Definition [Calderbank & Shor '95], [Steane '95]

We can construct a quantum error correcting code using C_X and C_Z two classical error correcting codes such that $C_X^{\perp} \subseteq C_Z$

Each generator g_1, \ldots, g_{n-k} of a CSS-code is either a product of Pauli X matrices or a product of Pauli Z matrices

Definition [Calderbank & Shor '95], [Steane '95]

We can construct a quantum error correcting code using C_X and C_Z two classical error correcting codes such that $C_X^{\perp} \subseteq C_Z$

Each generator g_1, \ldots, g_{n-k} of a CSS-code is either a product of Pauli X matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes which are orthogonal

Hypergraph product codes [Tillich & Zémor '09]

The parity check matrix H of a classical code C satisfies $C = \ker H$. Let H be the parity check matrix of a classical code with constant rate and linear minimal distance.

We define the two classical codes C_X and C_Z by their parity check matrices:

 $H_X = (\mathbb{1} \otimes H, H^T \otimes \mathbb{1}) \qquad H_Z = (H \otimes \mathbb{1}, \mathbb{1} \otimes H^T)$

Then $\mathcal{C}_X^{\perp} \subseteq \mathcal{C}_Z$

Hypergraph product codes [Tillich & Zémor '09]

The parity check matrix H of a classical code C satisfies $C = \ker H$. Let H be the parity check matrix of a classical code with constant rate and linear minimal distance.

We define the two classical codes \mathcal{C}_X and \mathcal{C}_Z by their parity check matrices:

 $H_X = (\mathbb{1} \otimes H, H^T \otimes \mathbb{1}) \qquad H_Z = (H \otimes \mathbb{1}, \mathbb{1} \otimes H^T)$

Then $\mathcal{C}_X^{\perp} \subseteq \mathcal{C}_Z$

Definition

The hypergraph product is defined as $CSS(C_X, C_Z)$. It's a constant rate code with minimal distance $d = \Theta(\sqrt{n})$

- Freedom to choose H
- [Leverrier & Tillich & Zémor '15] chooses *H* as the parity check-matrix of a "classical expander code" ([Sipser & Spielman, '96])

Classical expander codes

The parity check matrix H of a classical code C satisfies $C = \ker H$ H represented by a factor graph

Classical expander codes

The parity check matrix H of a classical code C satisfies $C = \ker H$ H represented by a factor graph

Definition of a
$$(\gamma, \delta)$$
 expander graph
For all $S \subseteq \{Bits\}$, if $|S| \le \gamma n$ then:
 $|\Gamma(S)| \ge (1 - \delta)d_1|S|$
 $|\Gamma(S)| \le d_1|S|$

Expander graph

- \rightarrow Parity check matrix
- \rightarrow Classical expander code
- ightarrow Quantum expander code

Decoder for quantum expander codes

• Classical case (bit-flip algorithm):

- As long as it is possible to flip a single bit to decrease the syndrome weight, flip this bit
- This efficient algorithm corrects any adversarial error of size up to $\Theta(n)$ for classical expander codes [Sipser & Spielman, '96]

Decoder for quantum expander codes

• Classical case (bit-flip algorithm):

- As long as it is possible to flip a single bit to decrease the syndrome weight, flip this bit
- This efficient algorithm corrects any adversarial error of size up to $\Theta(n)$ for classical expander codes [Sipser & Spielman, '96]

• Quantum case (small-set-flip algorithm):

- The "qubit-flip" algorithm doesn't work
- Idea: try to flip several qubits at each step
- As long as it is possible to flip a subset of a generator to decrease the syndrome weight, flip this subset

Decoder for quantum expander codes

• Classical case (bit-flip algorithm):

- As long as it is possible to flip a single bit to decrease the syndrome weight, flip this bit
- This efficient algorithm corrects any adversarial error of size up to $\Theta(n)$ for classical expander codes [Sipser & Spielman, '96]

• Quantum case (small-set-flip algorithm):

- The "qubit-flip" algorithm doesn't work
- Idea: try to flip several qubits at each step
- As long as it is possible to flip a subset of a generator to decrease the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor '15]

This efficient algorithm corrects any adversarial error of size up to $\Theta(\sqrt{n})$ for quantum expander codes