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Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with T perfect gates and m logical
qubits by a fault-tolerant circuit with noisy gates and O(m polylog(mT ))
physical qubits.

Practice: break RSA with 4000 logical qubits, but 106 − 109 physical
qubits

[Gottesman, ’13] improved this result using constant rate quantum
codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, ’13]

Provided codes with nice properties exist, the ratio physical/logical qubits
can be made constant: O(m polylog(mT )) ; O(m)

Before this work, no existing codes had these “nice properties”

We proved that quantum expander codes have these “nice
properties”
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Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000

ĉ ∈ C
ĉ : a guess for c

Ex: majority vote

m̂ ∈ Fk
2

m̂ : a guess for m

Decoding algorithm

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000
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Definition: classical error correcting codes

A [n, k]-error correcting code is a k-dimensional subspace of Fn
2

H ∈Mn−k,n is a parity check matrix for a code C if C = kerH

A. Grospellier Efficient decoding of random errors for quantum expander codes 5/20



Classical error correction

Alice Bob

m ∈ Fk
2

m : k bits message
Ex: m = 010

Noisy
channel

m̃ ∈ Fk
2

m̃ = m ⊕ error
Ex: m̃ = 000

c ∈ C ⊆ Fn
2, n > k

c : n bits message
Ex: c = 000111000

c̃ ∈ Fn
2

c̃ = c ⊕ error
Ex: c̃ = 100101000
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Factor graph of a code


0 1 1
1 1 0
0 0 1
1 0 0
1 1 0
0 1 1
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The bit-flip decoding algorithm

Error:
e0 = {0, 1, 2}
Unsatisfied check-nodes
(syndrome):
{10, 12, 14, 19}
Satisfied check-nodes:
{11, 13, 15,
16, 17, 18}
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The bit-flip decoding algorithm

Input: {10, 12, 14, 19}
(syndrome)

The error e0 is unknown

Output: e
a set of bits

Success condition:
e = e0

The algorithm flips a bit
when it decreases the
syndrome
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Decoding algorithm: first example
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Decoding algorithm: second example
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Outline

1 Classical error correction

2 Quantum error correction

3 Our contribution
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Quantum error correction

Alice Bob

|ϕ〉 ∈ C2k

|ϕ〉 : k qubits state

Noisy
channel

|ψ〉 ∈ Q ⊆ C2n

, n > k
|ψ〉 : n qubits state

|̃ψ〉 ∈ C2n

|̃ψ〉 = E |ψ〉

|̂ψ〉 ∈ Q
|̂ψ〉 : a guess for |ψ〉

|̂ϕ〉 ∈ C2k

|̂ϕ〉 : a guess for |ϕ〉

Bit: b ∈ F2 Qubit: |b〉 ∈ C2, ‖ |b〉 ‖2 = 1

A [n, k]-code is a k-dimensional
subspace of Fn

2

A Jn, kK-code is a
2k -dimensional subspace of C2n

Classical error: Flip Quantum errors: X and Z

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
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Example: the toric code

n qubits on edges

X -type generators associated with vertices

Z -type generators associated with
plaquettes

k = #holes = 2

d = systole =
√
n/2

Numerical simulations: 10% rate random
errors are corrected

Adversarial errors VS Random errors:

“Corrects adversarial errors of size up to Θ(
√
n)”: any error of size

up to Θ(
√
n) is corrected

→ Link with the minimal distance

“Corrects random errors of size Θ(n)”: an error where qubits are
flipped with probability p independently is corrected with high
probability
→ Framework of our result
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Initial problem:

The best known minimal distance for a constant rate LDPC code is
Θ(
√
n 4
√

log(n)) ([Freedman & Meyer & Luo ’02])

We want to correct random errors of size Θ(n) with very high
probability

Solution given by [Dennis & Kitaev & Landahl & Preskill ’01],
[Kovalev & Pryadko ’13]:

Use of graph percolation theory

Given a constant rate LDPC code with minimal distance d = Ω(nε),
the maximum likelihood decoder corrects random errors of size Θ(n)
with very high probability

Remaining problem:

The maximum likelihood decoder is exponential time in general
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Efficient decoder

There is a polynomial time decoder which corrects random errors of size
Θ(n) with very high probability

Very high probability: P(correction) = 1− o(1/nc) for all c ∈ N

Main Theorem

Quantum expander codes have an efficient decoder

Consequence:

We can apply [Gottesman, ’13] with quantum expander codes

Fault-tolerant quantum computation with constant overhead is
possible
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Summary of our contribution

Question: What happens for random errors of size Θ(n)?

Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Idea. The algorithm is local with respect to the adjacency graph
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The number of flips is linear in the size of the initial error

Definition: α-subset, α ∈ (0, 1]

X is an α-subset of E if |X ∩ E | ≥ α|X |

Each connected component X is an α-subset of {red dots}
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Theorem: what we proved

For a probability of error p < pth:
P(small-set-flip corrects the error) = 1− 1/eΩ(

√
n)

Key lemma: percolation

Let α ∈ (0, 1] and a probability of error p < cst(α, d).
With probability 1− 1/eΩ(

√
n):

If X is a connected α-subset of the error then |X | < c
√
n

Sketch of the proof of the theorem:
Take a random error and run the small-set-flip algorithm. Let X be a
connected component of the marked qubits:

X is an α-subset of the error

|X | < c
√
n

X is corrected

This is true for any X → the entire error is corrected
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Conclusion

Quantum expander codes:

Are LDPC quantum codes

Have a constant rate

Have a good minimal distance: d = Θ(
√
n)

The decoder:

Corrects any adversarial error of size up to Θ(
√
n)

For a probability of error p < pth : P(correction) = 1− 1/eΩ(
√
n)

Corollary:

Fault tolerant quantum computation with constant overhead is
possible

Future work (pth ∼ 10−16):

Run simulations

Improve our numerical value for the threshold

Thank you for your attention
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Known constructions of quantum LDPC codes

k Correction up to size Efficient correction up to size

Toric code [Kit03] 2 Θ(
√
n) Θ(

√
n)

Hyperbolic 2D [FML02] Θ(n) Θ(log n) Θ(log n)
Hyperbolic 4D
[GL14], [Has13], [LL17]

Θ(n) Ω(n0.2),O(n0.3) Θ(log n)

Expander codes
[TZ14], [LTZ15]

Θ(n) Θ(
√
n) Θ(

√
n)

[Kit03] A Yu Kitaev. Fault-tolerant quantum computation by anyons, 2003

[FML02] Michael H Freedman, David A Meyer, and Feng Luo. Z2-systolic freedom and quantum
codes, 2002

[GL14] Larry Guth and Alexander Lubotzky. Quantum error correcting codes and 4-dimensional
arithmetic hyperbolic manifolds, 2014

[Has13] Matthew B Hastings. Decoding in hyperbolic spaces: Ldpc codes with linear rate and
efficient error correction, 2013

[LL17] Vivien Londe and Anthony Leverrier. Golden codes: quantum ldpc codes built from regular
tessellations of hyperbolic 4-manifolds, 2017

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum ldpc codes with positive rate and minimum
distance proportional to the square root of the blocklength, 2014

[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander codes, 2015
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Stabilizer codes

Definition stabilizer codes: given a set g1, . . . , gn−k of commuting
Pauli operators (product of X and Z Pauli matrices) on n qubits (called
generators), we define a quantum code Q by:

Q =
{
|ψ〉 ∈ C2n

: g1 |ψ〉 = |ψ〉 · · · gn−k |ψ〉 = |ψ〉
}

Parameters of a stabilizer code Jn, k, dK:

Q encodes k logical qubits into n physical qubits
i.e Q is a 2k dimensional subspace of C2n

A logical error L is a Pauli operator such that [L, gi ] = 0 for all i and
L /∈ 〈g1, . . . , gn−k〉
The minimal distance d is the minimal weight of a logical error
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The CSS construction

Definition [Calderbank & Shor ’95], [Steane ’95]

We can construct a quantum error correcting code using CX and CZ two
classical error correcting codes such that C⊥X ⊆ CZ

Each generator g1, . . . , gn−k of a CSS-code is either a product of Pauli X
matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes
which are orthogonal
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Hypergraph product codes [Tillich & Zémor ’09]

The parity check matrix H of a classical code C satisfies C = kerH.
Let H be the parity check matrix of a classical code with constant rate
and linear minimal distance.
We define the two classical codes CX and CZ by their parity check
matrices:

HX = (1⊗ H,HT ⊗ 1) HZ = (H ⊗ 1,1⊗ HT )

Then C⊥X ⊆ CZ

Definition

The hypergraph product is defined as CSS(CX , CZ ).
It’s a constant rate code with minimal distance d = Θ(

√
n)

Freedom to choose H

[Leverrier & Tillich & Zémor ’15] chooses H as the parity
check-matrix of a “classical expander code” ([Sipser & Spielman,
’96])
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Classical expander codes

The parity check matrix H of a classical code C satisfies C = kerH
H represented by a factor graph
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Classical expander codes

The parity check matrix H of a classical code C satisfies C = kerH
H represented by a factor graph

Definition of a (γ, δ) expander graph

For all S ⊆ {Bits}, if |S | ≤ γn then:

|Γ(S)| ≥ (1− δ)d1|S |
|Γ(S)| ≤ d1|S |

Expander graph
→ Parity check matrix
→ Classical expander code
→ Quantum expander code

Bits Check-nodes

d
2

d
1

S

Г(S)
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Decoder for quantum expander codes

Classical case (bit-flip algorithm):

As long as it is possible to flip a single bit to decrease the syndrome
weight, flip this bit
This efficient algorithm corrects any adversarial error of size up to
Θ(n) for classical expander codes [Sipser & Spielman, ’96]

Quantum case (small-set-flip algorithm):

The “qubit-flip” algorithm doesn’t work
Idea: try to flip several qubits at each step
As long as it is possible to flip a subset of a generator to decrease
the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor ’15]

This efficient algorithm corrects any adversarial error of size up to Θ(
√
n)

for quantum expander codes
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