On the efficiency of normal form systems of Boolean functions

EJCIM - Student presentations

Pierre Mercuriali
Joint work with
Miguel Couceiro, Erkko Lehtonen, Romain Péchoux, Mathias Soeken
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
29 of March, 2018

(1) Preliminaries:

- Boolean functions,
- Clones,
- Normal Form Systems (NFSs)
(2) Efficiency of NFSs
- How to measure efficiency?
- Classification of NFSs
(3) Future work

Context

- Representation of Boolean functions
- Efficient representations? Number of connectives
- Here: stratified formulas (connectives occur in constrained order) Variants: Jukna, 2012
- Median Normal Form: shown to be "more efficient" than DNF, CNF, etc.
- Other connectives/ Normal Form Systems?

Clones of Boolean functions

Class composition of K with J :

$$
K \circ J=\left\{f\left(g_{1}, \ldots, g_{n}\right): f n \text {-ary in } K, g_{1}, \ldots, g_{n} m \text {-ary in } J\right\}
$$

Definition

A clone is a class $C \subseteq \Omega$ that contains all projections and satisfies $C \circ C=C$.

Examples of clones:

- Clone of all projections: I_{c}
- Clone of literals and constants: $\Omega(1)$
- Clone of all conjunctions: Λ
- Clone of all monotone functions: M
- Clone of all Boolean functions: Ω

Known results about (Boolean) clones:

- Clones constitute an algebraic lattice (E. Post, 1941).
- Largest clone: Ω
- Smallest clone: I_{c}
- Each clone C is finitely generated: $C=\mathcal{C}(K)$, for some finite $K \subseteq \Omega$ with:

$$
\mathcal{C}(K)=\bigcap_{K \subset C \text { clone }} C
$$

- Each C has a dual clone $C^{d}=\left\{f^{d}: f \in C\right\}$, with

$$
f^{d}\left(x_{1}, \ldots, x_{n}\right)=\overline{f\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)}
$$

Classification of clones: Post's lattice

Clone essentially associative: all essential functions are associative

Essentially associative

Examples of clones

Essentially unary clones: generated by essentially unary functions

- $I_{c}=\mathcal{C}(\{ \}), I_{0}=\mathcal{C}(\{\mathbf{0}\}), I_{1}=\mathcal{C}(\{\mathbf{1}\})$ and $I=\mathcal{C}(\{\mathbf{0}, \mathbf{1}\})$
- $I^{*}=\mathcal{C}(\{\neg\})$ and $\Omega(1)=\mathcal{C}(\{\mathbf{0}, \mathbf{1}, \neg\})$

Minimal clones: clones that cover the clone I_{C} of projections

- $\Lambda_{c}=\mathcal{C}(\{\wedge\})$ of conjunctions and $V_{c}=\mathcal{C}(\{\vee\})$ of disjunctions
- $L_{c}=\mathcal{C}(\{\oplus\})$ of constant-preserving linear functions
- $S M=\mathcal{C}\left(\mathrm{m}_{3}\right)$ of self-dual $\left(f=f^{d}\right)$ monotone functions

Composition of clones and normal forms

Known results about composition of clones:

- $C_{1} \circ C_{2}$ of clones is not always a clone: $I^{*} \circ \Lambda$ is not a clone
- Composition of clones completely described by Couceiro, Foldes, Lehtonen (CFL2006)
- All factorizations of Ω into a composition of "prime" clones (CFL2006)
- All factorizations of Ω into a composition of minimal clones (CFL2006)
(Descending) Irredundant Factorizations of Ω :
- DNF: $\Omega=V_{c} \circ \Lambda_{c} \circ I^{*}$
- CNF: $\Omega=\Lambda_{c} \circ V_{c} \circ I^{*}$
- PNF: $\Omega=L_{c} \circ \Lambda_{c} \circ I$
- PNF $^{d}: \Omega=L_{c} \circ V_{c} \circ I$
- MNF: $\Omega=S M \circ \Omega(1)$

Each corresponds to a normal form system (NFS)

Formalizing NFSs

Connectives $\alpha_{1}, \ldots, \alpha_{n}$
Set of terms $T\left(\alpha_{1} \cdots \alpha_{n}\right)$ contains:

- All variables,
- All constant symbols,
- All terms $\alpha_{k}\left(t_{1}, \ldots, t_{a r\left(\alpha_{k}\right)}\right)$ if t_{i} are terms

The connectives are taken in order!
In $T\left(m_{3} \wedge\right)$: In $T\left(\wedge \mathrm{~m}_{3}\right)$:

are not in the same NFSs!

Some NFSs of interest

- $\mathbf{M}=T\left(m_{3} \neg\right)$
- $\mathrm{M}_{2 n+1}=T\left(\mathrm{~m}_{2 n+1} \neg\right)$
- $\mathbf{S}=T(\uparrow) \quad$ (NAND)
- $\mathbf{S}^{d}=T(\downarrow) \quad(N O R)$
- $\mathbf{D}=T(\vee \wedge \neg)$

Median NF
$2 n+1$-MNF Sheffer NF

Peirce NF

- $\mathbf{C}=T(\wedge \vee \neg)$
- $\mathbf{P}=T(\oplus \wedge)$
- $\mathrm{P}^{d}=T(\oplus \vee)$

Efficiency of NFSs

A: NFS, $F_{\mathbf{A}}$: set of formulas of \mathbf{A}

The A-complexity of a Boolean function f is

$$
C_{\mathbf{A}}(f):=\min \left\{|\phi|: \phi \text { represents } f \text { and } \phi \in F_{\mathbf{A}}\right\}
$$

NB: Members of $\Omega(1)$ are not counted in $|\phi|$

Example:

$$
\begin{aligned}
\mathrm{M}: \phi & =\mathrm{m}_{3}\left(x_{1}, x_{2}, x_{3}\right) \quad \text { and } \quad C_{M}\left(\mathrm{MAJ}_{3}\right)=1 \\
\mathrm{D}: \phi & =\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{3}\right) \quad \text { and } \quad C_{\mathbf{D}}\left(\mathrm{MAJ}_{3}\right)=5 \\
\mathrm{C}: \phi & =\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \quad \text { and } \quad C_{\mathbf{C}}\left(\mathrm{MAJ}_{3}\right)=5 \\
\mathbf{P}: \phi & =\oplus_{3}\left(x_{1} \wedge x_{2}, x_{1} \wedge x_{3}, x_{2} \wedge x_{3}\right) \quad \text { and } \quad C_{\mathbf{P}}\left(\mathrm{MAJ}_{3}\right)=4 \\
\mathbf{P}^{d}: \phi & =\oplus_{3}\left(x_{1} \vee x_{2}, x_{1} \vee x_{3}, x_{2} \vee x_{3}\right) \quad \text { and } \quad C_{\mathbf{P}^{d}}\left(\mathrm{MAJ}_{3}\right)=4
\end{aligned}
$$

Comparison of NFSs

An NFS A is polynomially as efficient as \mathbf{B}, denoted $\mathbf{A} \preceq \mathbf{B}$, if there is a polynomial p with integer coefficients such that

$$
C_{\mathbf{A}}(f) \leq p\left(C_{\mathbf{B}}(f)\right) \quad \text { for all } f \in \Omega
$$

NB: \preceq is a quasi-ordering of NFSs

If $\mathbf{A} \npreceq \mathbf{B}$ and $\mathbf{B} \npreceq \mathbf{A}$ holds, then \mathbf{A} and \mathbf{B} are incomparable

If $\mathbf{A} \preceq \mathbf{B}$ but $\mathbf{B} \preceq \mathbf{A}$, then \mathbf{A} is polynomially more efficient than \mathbf{B}

If $\mathbf{A} \preceq \mathbf{B}$ and $\mathbf{B} \preceq \mathbf{A}$, then \mathbf{A} and \mathbf{B} are equivalently efficient $(\mathbf{A} \sim \mathbf{B})$

Motivation

Theorem (CFL2006)

(1) $\mathbf{D}, \mathbf{C}, \mathbf{P}$, and \mathbf{P}^{d} are incomparable
(2) \mathbf{M} is polynomially more efficient than $\mathbf{D}, \mathbf{C}, \mathbf{P}$, and \mathbf{P}^{d}

Definition (to be justified below)

An NFS \mathbf{A} is efficient if $\mathbf{A} \sim \mathbf{M}$.

Problem 1. Existence of other NFSs? E.g.: (other connectives)
Problem 2. Classification of NFSs in terms of efficiency
Problem 3. Does the choice of generators within NFSs impact efficiency? E.g.: m_{3} vs m_{5} ?

Problem 4. How to obtain optimal representations in each efficient NFS? E.g.: optimal median normal forms?

Locating efficient NFSs...

Theorem

NFSs based on a single nontrivial connective are efficient

Theorem

The choice of connective does not impact efficiency $\left(e x .: T\left(m_{3} \neg\right) \sim T\left(m_{5} \neg\right)\right) / 19$

Classification of NFSs

Theorem

M is optimal: there is no NFS strictly below it

NB: justifies the definition of efficiency!

Why is M optimal? (Illustration)

Property of the ternary median: pivotal function!

Definition

Median decomposition scheme (Marichal, 2009):
f a monotone Boolean function;
for any $k \in\{1, \ldots, \operatorname{ar}(f)\}$:

$$
f(\mathbf{x})=\mathrm{m}\left(f\left(\mathbf{x}_{k}^{0}\right), x_{k}, f\left(\mathbf{x}_{k}^{1}\right)\right)
$$

\rightarrow Provides efficient (i.e. polynomial at most) ways to rewrite terms $\mathbf{A} \rightarrow \mathbf{M}$

Exemple

Example: $f(x, y, z)=(x \wedge y) \wedge z$.

From the median decomposition scheme:

$$
f(x, y, z)=\mathrm{m}(f(0, y, z), x, f(1, y, z)),
$$

$$
f(x, y, z)=m(m(m(0, z, 1), y, m(0, z, 0)), x, m(m(0, z, 0), y, m(0, z, 1)))
$$

\rightarrow Composition without (too many) repeted subterms!

Future work

(1) Finer comparison of efficient NFSs
(2) Redundant factorizations of Ω
(3) NFSs to represent functions from a smaller clone than Ω (e.g. M)
(4) Representation of multi-valued operations $\{0, \ldots, n\}^{k} \rightarrow\{0, \ldots, n\}$
(6) Median normal forms (in M)

- Decision problems: minimization, rewriting
- Structural description

Merci de votre attention!

Thank you for your attention!

Grazie mille per la vostra attenzione!

