Combinatoric Analysis for Cardinality
 Constraints

Giovanni Lo Bianco, TASC
$27^{\text {th }}$ March 2018

Supervisors: Xavier Lorca, Charlotte Truchet

Summary

1. Constraint Programming

Introduction
The alldifferent constraint
Example :The n-queens problem
2. Combinatorics in Cardinality Constraints
alldifferent Model
global_cardinality
Counting Solutions
Probabilistic Model

Constraint Programming

Introduction

Constraint Programming is used to solve satisfaction and optimization problems.

Constraint Satisfaction Problem :

- A set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- Each variable x_{i} can only take a value from a domain D_{i} (discrete)
- A set of constraints $C=\left\{C_{1}, \ldots, C_{p}\right\}$, which are logical connections between variables.

Applications : Scheduling problems, assignment problems, transportation problems, stock management, etc...

The alldifferent constraint

There are different types of constraint :

- Arithmetic : $<,>, \leq, \geq,=, \neq$
- On graphs : circuit, tree
- On words : regular
- Cardinality Constraints : alldifferent, global_cardinality, nvalue

alldifferent [4]

The constraint alldifferent $\left(x_{1}, \ldots, x_{n}\right)$ ensures that every variable takes different value.

Example : The n-queens problem

The model :

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$, a variable $=$ a column
- $\forall x_{i} \in X, D_{i}=\{1, \ldots, n\}$, a value $=$ a row
- Constraints :
- every queen must be on different rows: alldifferent $\left(x_{1}, \ldots, x_{n}\right)$.
- every queen must be on different ascending diagonals :

$$
\forall i \neq j, x_{i}+i \neq x_{j}+j
$$

- every queen must be on different descending diagonals :

$$
\forall i \neq j, x_{i}+j \neq x_{j}+i
$$

Figure 1 - A solution for $n=4$:
$\left(x_{1}=2, x_{2}=4, x_{3}=1, x_{4}=3\right)$

Example : The n-queens problem

Resolution :

- Instantiation

Variable/Value

- Propagation
- Domain empty
\rightarrow backtrack

Example : The n-queens problem

Resolution :

- Instantiation

Variable/Value

- Propagation
- Domain empty
\rightarrow backtrack
Which instantiation?
We need heuristics

Combinatorics in Cardinality
 Constraints

alldifferent Model

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} D_{1}=\{1,2,4\}, \\
& D_{2}=\{2,3\}, D_{3}=\{1,2,3,5\}, D_{4}=\{4,5\}
\end{aligned}
$$

Figure 2 - Model for alldifferent

alldifferent Model

$X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} D_{1}=\{1,2,4\}$,
$D_{2}=\{2,3\}, D_{3}=\{1,2,3,5\}, D_{4}=\{4,5\}$

One solution $=$ One matching covering X

Figure 2 - Model for alldifferent

The global_cardinality constraint

alldifferent: Each value y_{j} must be assigned at most once
global_cardinality [5] : Each value y_{j} must be assigned at least l_{j} times and at most u_{j} times

Figure 3 - Example of an instance of global_cardinality

Counting Solutions on alldifferent

Biadjacency matrix :

$$
B=\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

$|X|=n \leq|Y|=m$

Counting Solutions on alldifferent

Biadjacency matrix :
$B=\left(\begin{array}{lllll}1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$

Permanent

$$
\operatorname{Perm}(B)=\frac{1}{(m-n)!} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{i=1}^{n} b_{i \sigma(i)}
$$

There are $\operatorname{Perm}(B)=13$ solutions in our example.

$|X|=n \leq|Y|=m$

Counting Solutions on alldifferent

Counting the number of matchings in a bipartite graph is \#P-Complete [6]
We can compute a bound in polynomial time :

Brégman-Minc upper bound [1]

$$
\operatorname{Perm}(B) \leq \prod_{i=1}^{n}\left(d_{i}!\right)^{\frac{1}{d_{i}}}
$$

with $d_{i}=\sum_{j=1}^{m} b_{i j}$

$|X|=n \leq|Y|=m$

Counting Solutions on alldifferent

Counting-Based Search [3]

We first explore the sub-problem where there are likely most solutions

Counting Solutions on alldifferent

Counting-Based Search [3]

We first explore the sub-problem where there are likely most solutions

Counting Solutions on alldifferent

Counting-Based Search [3]

We first explore the sub-problem where there are likely most solutions

Counting Solutions on alldifferent

Counting-Based Search [3]

We first explore the sub-problem where there are likely most solutions

Counting Solutions on alldifferent

Counting-Based Search [3]

We first explore the sub-problem where there are likely most solutions

Probabilistic model for alldifferent

Erdős-Renyi Model [2]

$$
\forall x_{i} \in X, \forall y_{j} \in Y, \mathbb{P}\left(\left\{y_{j} \in D_{i}\right\}\right)=p \in[0,1] \text { and }\left\{y_{j} \in D_{i}\right\} \text { independent }
$$

Probabilistic model for alldifferent

Erdős-Renyi Model [2]

$\forall x_{i} \in X, \forall y_{j} \in Y, \mathbb{P}\left(\left\{y_{j} \in D_{i}\right\}\right)=p \in[0,1]$ and $\left\{y_{j} \in D_{i}\right\}$ independent

- $\mathbb{E}(\operatorname{Perm}(B))=m!\cdot p^{n}$

Probabilistic model for alldifferent

Erdős-Renyi Model [2]

$$
\forall x_{i} \in X, \forall y_{j} \in Y, \mathbb{P}\left(\left\{y_{j} \in D_{i}\right\}\right)=p \in[0,1] \text { and }\left\{y_{j} \in D_{i}\right\} \text { independent }
$$

- $\mathbb{E}(\operatorname{Perm}(B))=m!\cdot p^{n}$
- Existence of a solution :

Figure 4 - Phase transition for the existence of a solution

Probabilistic model for alldifferent

Erdős-Renyi Model [2]

$\forall x_{i} \in X, \forall y_{j} \in Y, \mathbb{P}\left(\left\{y_{j} \in D_{i}\right\}\right)=p \in[0,1]$ and $\left\{y_{j} \in D_{i}\right\}$ independent

- $\mathbb{E}(\operatorname{Perm}(B))=m!\cdot p^{n}$
- Existence of a solution :

Example

For our example, we can take $p=\frac{11}{20}$:

- We can expect 10,98 solutions
- We are almost sure that there is a solution

Figure 4 - Phase transition for the existence of a solution

Bibliography I

围 L. M. Bregman.
Some properties of nonnegative matrices ans their permanents.
Soviet Mathematics Doklady, 1973.
围
P. Erdos and A. Renyi.

On random matrices.
Publication of the Mathematical Institute of the Hungarian Academy
of Science, 1963.
E
G. Pesant, C. Quimper, and A. Zanarini.

Counting-based search : Branching heuristics for constraint satisfaction problems.
J. Artif. Intell. Res., 43 :173-210, 2012.

Bibliography II

目 J．Régin．
A filtering algorithm for constraints of difference in csps．
In B．Hayes－Roth and R．E．Korf，editors，Proceedings of the 12th
National Conference on Artificial Intelligence，Seattle，WA，USA，
July 31 －August 4，1994，Volume 1．，pages 362－367．AAAI Press／
The MIT Press， 1994.
埌 J．－C．Régin．
Generalized arc consistency for global cardinality constraint． In Proceedings of the Thirteenth National Conference on Artificial Intelligence－Volume 1，AAAI＇96，pages 209－215．AAAI Press， 1996.
围
L．G．Valiant．
The complexity of computing the permanent．
Theor．Comput．Sci．， 8 ：189－201， 1979.

Questions?

