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Constraint Programming



Introduction

Constraint Programming is used to solve satisfaction and optimization
problems.

Constraint Satisfaction Problem :

• A set of variables X = {x1, . . . , xn}
• Each variable xi can only take a value from a domain Di (discrete)

• A set of constraints C = {C1, . . . ,Cp}, which are logical connections
between variables.

Applications : Scheduling problems, assignment problems, transportation
problems, stock management, etc...
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The alldifferent constraint

There are different types of constraint :

• Arithmetic : <,>,≤,≥,=, 6=
• On graphs : circuit, tree

• On words : regular

• Cardinality Constraints : alldifferent, global_cardinality , nvalue

alldifferent [4]
The constraint alldifferent(x1, . . . , xn) ensures that every variable takes
different value.
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Example : The n-queens problem

The model :

• X = {x1, . . . , xn}, a variable = a column

• ∀xi ∈ X ,Di = {1, . . . , n}, a value = a row

• Constraints :
- every queen must be on different rows :

alldifferent(x1, . . . , xn).
- every queen must be on different
ascending diagonals :
∀i 6= j , xi + i 6= xj + j

- every queen must be on different
descending diagonals :
∀i 6= j , xi + j 6= xj + i

Figure 1 – A solution for
n = 4 :
(x1 = 2, x2 = 4, x3 = 1, x4 = 3)
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Example : The n-queens problem

Resolution :

• Instantiation
Variable/Value

• Propagation

• Domain empty
→ backtrack

Which instantiation ?
We need heuristics
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Combinatorics in Cardinality
Constraints



alldifferent Model

X = {x1, x2, x3, x4} D1 = {1, 2, 4},
D2 = {2, 3}, D3 = {1, 2, 3, 5}, D4 = {4, 5}

One solution = One matching covering X
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Figure 2 – Model for
alldifferent
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The global_cardinality constraint

alldifferent : Each value yj
must be assigned at most
once
global_cardinality [5] : Each
value yj must be assigned at
least lj times and at most uj

times

x1

x2

x3

x4

1 0-1

2 1-3

3 1-1

4 1-2

5 0-1

Figure 3 – Example of an instance of
global_cardinality
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Counting Solutions on alldifferent

Biadjacency matrix :

B =


1 1 0 1 0
0 1 1 0 0
1 1 1 0 1
0 0 0 1 1



Permanent

Perm(B) =
1

(m − n)!

∑
σ∈Sm

n∏
i=1

biσ(i)

There are Perm(B) = 13 solutions in our
example.
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|X | = n ≤ |Y | = m
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Counting Solutions on alldifferent

Counting the number of matchings in a
bipartite graph is #P-Complete [6]
We can compute a bound in polynomial
time :

Brégman-Minc upper bound [1]

Perm(B) ≤
n∏

i=1

(di !)
1
di

with di =
∑m

j=1 bij

x1

x2

x3

x4

1

2

3

4

5

|X | = n ≤ |Y | = m
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Counting Solutions on alldifferent

Counting-Based Search [3]
We first explore the sub-problem where
there are likely most solutions
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Probabilistic model for alldifferent

Erdős-Renyi Model [2]
∀xi ∈ X ,∀yj ∈ Y ,P({yj ∈ Di}) = p ∈ [0, 1] and {yj ∈ Di} independent

• E(Perm(B)) = m! · pn

• Existence of a solution :

Example
For our example, we can take
p = 11

20 :

• We can expect 10, 98 solutions

• We are almost sure that there
is a solution

p 10

1

Figure 4 – Phase transition for the
existence of a solution
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Questions ?
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